

Welcome to pyFFTW’s documentation!

Introduction

pyFFTW is a pythonic wrapper around FFTW [http://www.fftw.org/], the
speedy FFT library. The ultimate aim is to present a unified interface for all
the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary
axes of abitrary shaped and strided arrays, which makes it almost
feature equivalent to standard and real FFT functions of numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft]
(indeed, it supports the clongdouble dtype which
numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

The core interface is provided by a unified class, pyfftw.FFTW.
This core interface can be accessed directly, or through a series of helper
functions, provided by the pyfftw.builders module. These helper
functions provide an interface similar to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] for ease of use.

In addition to using pyfftw.FFTW, a convenient series of functions
are included through pyfftw.interfaces that make using pyfftw
almost equivalent to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] or scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack].

The source can be found in github [https://github.com/pyFFTW/pyFFTW] and
its page in the python package index is here [http://pypi.python.org/pypi/pyFFTW].

A comprehensive unittest suite is included with the source on the repository.
If any aspect of this library is not covered by the test suite, that is a bug
(please report it!).

Contents

	Overview and A Short Tutorial
	Quick and easy: the pyfftw.interfaces module

	The workhorse pyfftw.FFTW class

	The pyfftw.builders functions

	Configuring FFTW planning effort and number of threads

	License

	API Reference
	pyfftw - The core

	pyfftw.builders - Get FFTW objects using a numpy.fft like interface

	pyfftw.builders._utils - Helper functions for pyfftw.builders

	pyfftw.interfaces - Drop in replacements for other FFT implementations

Indices and tables

	Index

	Module Index

	Search Page

Overview and A Short Tutorial

Before we begin, we assume that you are already familiar with the
discrete Fourier transform [http://en.wikipedia.org/wiki/Discrete_Fourier_transform],
and why you want a faster library to perform your FFTs for you.

FFTW [http://www.fftw.org/] is a very fast FFT C library. The way it
is designed to work is by planning in advance the fastest way to
perform a particular transform. It does this by trying lots of
different techniques and measuring the fastest way, so called
planning.

One consequence of this is that the user needs to specify in advance
exactly what transform is needed, including things like the data type,
the array shapes and strides and the precision. This is quite
different to how one uses, for example, the numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] module.

The purpose of this library is to provide a simple and pythonic way
to interact with FFTW, benefiting from the substantial speed-ups it
offers. In addition to the method of using FFTW as described above,
a convenient series of functions are included through pyfftw.interfaces
that make using pyfftw almost equivalent to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft].

This tutorial is split into three parts. A quick introduction to the
pyfftw.interfaces module is given, the
most simple and direct way to use pyfftw. Secondly an
overview is given of pyfftw.FFTW, the core
of the library. Finally, the pyfftw.builders helper functions are
introduced, which ease the creation of
pyfftw.FFTW objects.

Quick and easy: the pyfftw.interfaces module

The easiest way to begin using pyfftw is through the
pyfftw.interfaces module. This module implements three APIs:
pyfftw.interfaces.numpy_fft,
pyfftw.interfaces.scipy_fftpack, and
pyfftw.interfaces.dask_fft,
which are (apart from a small
caveat 1) drop in replacements for numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft],
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack], and dask.fft respectively.

>>> import pyfftw
>>> import numpy
>>> a = pyfftw.empty_aligned(128, dtype='complex128', n=16)
>>> a[:] = numpy.random.randn(128) + 1j*numpy.random.randn(128)
>>> b = pyfftw.interfaces.numpy_fft.fft(a)
>>> c = numpy.fft.fft(a)
>>> numpy.allclose(b, c)
True

We initially create and fill a complex array, a, of length 128.
pyfftw.empty_aligned() is a helper function that works like
numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty] but returns the array aligned to a particular number of
bytes in memory, in this case 16. If the alignment is not specified then the
library inspects the CPU for an appropriate alignment value. Having byte aligned
arrays allows FFTW to performed vector operations, potentially speeding up the
FFT (a similar pyfftw.byte_align() exists to align a pre-existing array as
necessary).

Calling pyfftw.interfaces.numpy_fft.fft() on a gives the same
output (to numerical precision) as calling numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft] on a.

If you wanted to modify existing code that uses numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] to use
pyfftw.interfaces, this is done simply by replacing all instances of
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] with pyfftw.interfaces.numpy_fft (similarly for
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] and pyfftw.interfaces.scipy_fftpack), and then,
optionally, enabling the cache (see below).

The first call for a given transform size and shape and dtype and so on
may be slow, this is down to FFTW needing to plan the transform for the first
time. Once this has been done, subsequent equivalent transforms during the
same session are much faster. It’s possible to export and save the internal
knowledge (the wisdom) about how the transform is done. This is described
below.

Even after the first transform of a given specification has been performed,
subsequent transforms are never as fast as using pyfftw.FFTW objects
directly, and in many cases are substantially slower. This is because of the
internal overhead of creating a new pyfftw.FFTW object on every call.
For this reason, a cache is provided, which is recommended to be used whenever
pyfftw.interfaces is used. Turn the cache on using
pyfftw.interfaces.cache.enable(). This function turns the cache on
globally. Note that using the cache invokes the threading module.

The cache temporarily stores a copy of any interim pyfftw.FFTW
objects that are created. If they are not used for some period of time,
which can be set with pyfftw.interfaces.cache.set_keepalive_time(),
then they are removed from the cache (liberating any associated memory).
The default keepalive time is 0.1 seconds.

Integration with 3rd party libraries

SciPy versions 1.4 and above have support for installing different FFT
backends. pyfftw.interfaces.scipy_fft support the use as a backend. Note
that the interfaces (and builders) all currently default to a single thread. The
number of threads to use can be configured by assigning a positive integer to
pyfftw.config.NUM_THREADS (see more details under :ref:configuration
<interfaces_tutorial>). The following code demonstrates using the pyfftw
backend to speed up scipy.signal.fftconvolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve].

import pyfftw
import multiprocessing
import scipy.signal
import scipy.fft
import numpy
from timeit import Timer

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

a[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)
b[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)

t = Timer(lambda: scipy.signal.fftconvolve(a, b))

print('Time with scipy.fft default backend: %1.3f seconds' %
 t.timeit(number=100))

Configure PyFFTW to use all cores (the default is single-threaded)
pyfftw.config.NUM_THREADS = multiprocessing.cpu_count()

Use the backend pyfftw.interfaces.scipy_fft
with scipy.fft.set_backend(pyfftw.interfaces.scipy_fft):
 # Turn on the cache for optimum performance
 pyfftw.interfaces.cache.enable()

 # We cheat a bit by doing the planning first
 scipy.signal.fftconvolve(a, b)

 print('Time with pyfftw backend installed: %1.3f seconds' %
 t.timeit(number=100))

which outputs something like:

Time with scipy.fft default backend: 0.267 seconds
Time with pyfftw backend installed: 0.162 seconds

Prior to SciPy 1.4 it was necessary to monkey patch the libraries
directly. pyfftw.interfaces.numpy_fft and
pyfftw.interfaces.scipy_fftpack are drop-in replacements for the
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] and scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] libraries respectively so it is
possible to use them as replacements at run-time through monkey patching.

Monkey patch fftpack with pyfftw.interfaces.scipy_fftpack
scipy.fftpack = pyfftw.interfaces.scipy_fftpack
scipy.signal.fftconvolve(a, b)

Note that prior to SciPy 0.16, it was necessary to patch the individual
functions in scipy.signal.signaltools. For example:

scipy.signal.signaltools.ifftn = pyfftw.interfaces.scipy_fftpack.ifftn

The workhorse pyfftw.FFTW class

The core of this library is provided through the pyfftw.FFTW
class. FFTW is fully encapsulated within this class.

The following gives an overview of the pyfftw.FFTW class, but
the easiest way to of dealing with it is through the
pyfftw.builders helper functions, also
discussed in this tutorial.

For users that already have some experience of FFTW, there is no
interface distinction between any of the supported data types, shapes
or transforms, and operating on arbitrarily strided arrays (which are
common when using numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy]) is fully supported with no copies
necessary.

In its simplest form, a pyfftw.FFTW object is created with
a pair of complementary numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] arrays: an input array and an
output array. They are complementary insomuch as the data types and the
array sizes together define exactly what transform should be performed.
We refer to a valid transform as a scheme.

Internally, three precisions of FFT are supported. These correspond
to single precision floating point, double precision floating point
and long double precision floating
point, which correspond to numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy]’s float32, float64
and longdouble dtypes respectively (and the corresponding
complex types). The precision is decided by the relevant scheme,
which is specified by the dtype of the input array.

Various schemes are supported by pyfftw.FFTW. The scheme
that is used depends on the data types of the input array and output
arrays, the shape of the arrays and the direction flag. For a full
discussion of the schemes available, see the API documentation for
pyfftw.FFTW.

One-Dimensional Transforms

We will first consider creating a simple one-dimensional transform of
a one-dimensional complex array:

import pyfftw

a = pyfftw.empty_aligned(128, dtype='complex128')
b = pyfftw.empty_aligned(128, dtype='complex128')

fft_object = pyfftw.FFTW(a, b)

In this case, we create 2 complex arrays, a and b each of
length 128. As before, we use pyfftw.empty_aligned() to
make sure the array is aligned.

Given these 2 arrays, the only transform that makes sense is a
1D complex DFT. The direction in this case is the default, which is
forward, and so that is the transform that is planned. The
returned fft_object represents such a transform.

In general, the creation of the pyfftw.FFTW object clears the
contents of the arrays, so the arrays should be filled or updated
after creation.

Similarly, to plan the inverse:

c = pyfftw.empty_aligned(128, dtype='complex128')
ifft_object = pyfftw.FFTW(b, c, direction='FFTW_BACKWARD')

In this case, the direction argument is given as 'FFTW_BACKWARD'
(to override the default of 'FFTW_FORWARD').

pyfftw.FFTW also supports all of the discrete sine and cosine
transformations (also called real to real transformations) implemented by
FFTW: for example

d = pyfftw.empty_aligned(128, dtype='float64')
e = pyfftw.empty_aligned(128, dtype='float64')

dct_transform = pyfftw.FFTW(d, e, direction='FFTW_REDFT00')

creates an instance of pyfftw.FFTW which can execute the
discrete cosine boundary condition with even boundary conditions on
both ends (also known as the DCT-1).

The actual FFT is performed by calling the returned objects:

import numpy

Generate some data
ar, ai = numpy.random.randn(2, 128)
a[:] = ar + 1j*ai

fft_a = fft_object()

Note that calling the object like this performs the FFT and returns
the result in an array. This is the same array as b:

>>> fft_a is b
True

This is particularly useful when using pyfftw.builders to
generate the pyfftw.FFTW objects.

Calling the FFT object followed by the inverse FFT object yields
an output that is numerically the same as the original a
(within numerical accuracy).

>>> fft_a = fft_object()
>>> ifft_b = ifft_object()
>>> ifft_b is c
True
>>> numpy.allclose(a, c)
True
>>> a is c
False

In this case, the normalisation of the DFT is performed automatically
by the inverse FFTW object (ifft_object). This can be disabled
by setting the normalise_idft=False argument.

It is possible to change the data on which a pyfftw.FFTW
operates. The pyfftw.FFTW.__call__() accepts both an
input_array and an output_array argument to update the
arrays. The arrays should be compatible with the arrays with which
the pyfftw.FFTW object was originally created. Please read the
API docs on pyfftw.FFTW.__call__() to fully understand the
requirements for updating the array.

>>> d = pyfftw.empty_aligned(4, dtype='complex128')
>>> e = pyfftw.empty_aligned(4, dtype='complex128')
>>> f = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft_object = pyfftw.FFTW(d, e)
>>> fft_object.input_array is d # get the input array from the object
True
>>> f[:] = [1, 2, 3, 4] # Add some data to f
>>> fft_object(f)
array([10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> fft_object.input_array is d # No longer true!
False
>>> fft_object.input_array is f # It has been updated with f :)
True

If the new input array is of the wrong dtype or wrongly strided,
pyfftw.FFTW.__call__() method will copy the new array into the
internal array, if necessary changing it’s dtype in the process.

It should be made clear that the pyfftw.FFTW.__call__() method
is simply a helper routine around the other methods of the object.
Though it is expected that most of the time
pyfftw.FFTW.__call__() will be sufficient, all the FFTW
functionality can be accessed through other methods at a slightly
lower level.

Multi-Dimensional Transforms

Arrays of more than one dimension are easily supported as well.
In this case, the axes argument specifies over which axes the
transform is to be taken.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

Plan an fft over the last axis
fft_object_a = pyfftw.FFTW(a, b)

Over the first axis
fft_object_b = pyfftw.FFTW(a, b, axes=(0,))

Over the both axes
fft_object_c = pyfftw.FFTW(a, b, axes=(0,1))

For further information on all the supported transforms, including
real transforms, as well as full documentation on all the
instantiation arguments, see the pyfftw.FFTW documentation.

Wisdom

When creating a pyfftw.FFTW object, it is possible to instruct
FFTW how much effort it should put into finding the fastest possible
method for computing the DFT. This is done by specifying a suitable
planner flag in flags argument to pyfftw.FFTW. Some
of the planner flags can take a very long time to complete which can
be problematic.

When the a particular transform has been created, distinguished by
things like the data type, the shape, the stridings and the flags,
FFTW keeps a record of the fastest way to compute such a transform in
future. This is referred to as
wisdom [http://www.fftw.org/fftw3_doc/Wisdom.html]. When
the program is completed, the wisdom that has been accumulated is
forgotten.

It is possible to output the accumulated wisdom using the
wisdom output routines.
pyfftw.export_wisdom() exports and returns the wisdom as a tuple
of strings that can be easily written to file. To load the wisdom back
in, use the pyfftw.import_wisdom() function which takes as its
argument that same tuple of strings that was returned from
pyfftw.export_wisdom().

If for some reason you wish to forget the accumulated wisdom, call
pyfftw.forget_wisdom().

The pyfftw.builders functions

If you absolutely need the flexibility of dealing with
pyfftw.FFTW directly, an easier option than constructing valid
arrays and so on is to use the convenient pyfftw.builders package.
These functions take care of much of the difficulty in specifying the
exact size and dtype requirements to produce a valid scheme.

The pyfftw.builders functions are a series of helper functions
that provide an interface very much like that provided by
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], only instead of returning the result of the
transform, a pyfftw.FFTW object (or in some cases a wrapper
around pyfftw.FFTW) is returned.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

Generate some data
ar, ai = numpy.random.randn(2, 128, 64)
a[:] = ar + 1j*ai

fft_object = pyfftw.builders.fft(a)

b = fft_object()

fft_object is an instance of pyfftw.FFTW, b is
the result of the DFT.

Note that in this example, unlike creating a pyfftw.FFTW
object using the direct interface, we can fill the array in advance.
This is because by default all the functions in pyfftw.builders
keep a copy of the input array during creation (though this can
be disabled).

The pyfftw.builders functions construct an output array of
the correct size and type. In the case of the regular DFTs, this
always creates an output array of the same size as the input array.
In the case of the real transform, the output array is the right
shape to satisfy the scheme requirements.

The precision of the transform is determined by the dtype of the
input array. If the input array is a floating point array, then
the precision of the floating point is used. If the input array
is not a floating point array then a double precision transform is used.
Any calls made to the resultant object with an array of the same
size will then be copied into the internal array of the object,
changing the dtype in the process.

Like numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], it is possible to specify a length (in the
one-dimensional case) or a shape (in the multi-dimensional case) that
may be different to the array that is passed in. In such a case,
a wrapper object of type
pyfftw.builders._utils._FFTWWrapper is returned. From an
interface perspective, this is identical to pyfftw.FFTW. The
difference is in the way calls to the object are handled. With
pyfftw.builders._utils._FFTWWrapper objects, an array that
is passed as an argument when calling the object is copied into the
internal array. This is done by a suitable slicing of the new
passed-in array and the internal array and is done precisely because
the shape of the transform is different to the shape of the input
array.

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

fft_wrapper_object = pyfftw.builders.fftn(a, s=(32, 256))

b = fft_wrapper_object()

Inspecting these objects gives us their shapes:

>>> b.shape
(32, 256)
>>> fft_wrapper_object.input_array.shape
(32, 256)
>>> a.shape
(128, 64)

It is only possible to call fft_wrapper_object with an array
that is the same shape as a. In this case, the first axis of a
is sliced to include only the first 32 elements, and the second axis
of the internal array is sliced to include only the last 64 elements.
This way, shapes are made consistent for copying.

Understanding numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], these functions are largely
self-explanatory. We point the reader to the API docs
for more information.

If you like the pyfftw.builders functions, but do not need or wish to
interact with pyfftw.FFTW-instances directly, the third party
planfftw package provides helper functions that return planned functions
similar to those in numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], as well as FFTW-powered versions of some
functions from scipy.signal [https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal].

Configuring FFTW planning effort and number of threads

The user may set the default number of threads used by the interfaces and
builders at run time by assigning to pyfftw.config.NUM_THREADS. Similarly
the default
planning effort [http://www.fftw.org/fftw3_doc/Planner-Flags.html]
may be set by assigning a string such as 'FFTW_ESTIMATE' or
'FFTW_MEASURE' to pyfftw.config.PLANNER_EFFORT.

For example, to change the effort to 'FFTW_MEASURE' and specify 4 threads:

import pyfftw

pyfftw.config.NUM_THREADS = 4

pyfftw.config.PLANNER_EFFORT = 'FFTW_MEASURE'

All functions in pyfftw.interfaces and pyfftw.builders use the
values from pyfftw.config when determining the default number of threads
and planning effort.

The initial values in pyfftw.config at import time can be controlled via the
environment variables as detailed in the
configuration documentation.

Footnotes

	1

	pyfftw.interfaces deals with repeated values in the
axes argument differently to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] (and probably to
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] to, but that’s not documented clearly).
Specifically, numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] takes the transform along a given axis
as many times as it appears in the axes argument.
pyfftw.interfaces takes the transform only once along each
axis that appears, regardless of how many times it appears. This is
deemed to be such a fringe corner case that it is ignored.

License

Note

While all the code in pyfftw (except for fftw3.h) is released
under the 3-clause BSD license (set out below), pyfftw requires FFTW3
to function. FFTW3 is available under two licenses, the free GPL and
a non-free license that allows it to be used in proprietary programs.

If you intend to use the GPLed FFTW3 library, your code must also be
GPL licensed. If you do not wish to comply with the terms of the GPL,
you have to buy a FFTW3 license from the copyright holder MIT, see here
for more information [http://www.fftw.org/doc/License-and-Copyright.html].

fftw3.h is released under the 2-clause BSD license.

See each file for the copyright holder.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

API Reference

	pyfftw - The core
	FFTW Class
	FFTW
	FFTW.N

	FFTW.simd_aligned

	FFTW.input_alignment

	FFTW.output_alignment

	FFTW.flags

	FFTW.input_array

	FFTW.output_array

	FFTW.input_shape

	FFTW.output_shape

	FFTW.input_strides

	FFTW.output_strides

	FFTW.input_dtype

	FFTW.output_dtype

	FFTW.direction

	FFTW.axes

	FFTW.ortho

	FFTW.normalise_idft

	FFTW.__call__()

	FFTW.update_arrays()

	FFTW.execute()

	FFTW.get_input_array()

	FFTW.get_output_array()

	Wisdom Functions
	export_wisdom()

	import_wisdom()

	forget_wisdom()

	Utility Functions
	pyfftw.simd_alignment

	byte_align()

	empty_aligned()

	zeros_aligned()

	ones_aligned()

	is_byte_aligned()

	n_byte_align()

	n_byte_align_empty()

	is_n_byte_aligned()

	next_fast_len()

	FFTW Configuration
	pyfftw.config.NUM_THREADS

	pyfftw.config.PLANNER_EFFORT

	pyfftw.builders - Get FFTW objects using a numpy.fft like interface
	Overview

	Supported Functions and Caveats

	Additional Arguments

	The Functions
	dct()

	dst()

	fft()

	fft2()

	fftn()

	ifft()

	ifft2()

	ifftn()

	irfft()

	irfft2()

	irfftn()

	rfft()

	rfft2()

	rfftn()

	pyfftw.builders._utils - Helper functions for pyfftw.builders
	_FFTWWrapper
	_FFTWWrapper.__call__()

	_Xfftn()

	_compute_array_shapes()

	_cook_nd_args()

	_precook_1d_args()

	_setup_input_slicers()

	pyfftw.interfaces - Drop in replacements for other FFT implementations
	Implemented Functions
	numpy_fft

	scipy_fft

	scipy_fftpack

	dask_fft

	Additional Arguments

	Caching
	disable()

	enable()

	set_keepalive_time()

pyfftw - The core

The core of pyfftw consists of the FFTW class,
wisdom functions and a couple of
utility functions for dealing with aligned
arrays.

This module represents the full interface to the underlying FFTW
library [http://www.fftw.org/]. However, users may find it easier to
use the helper routines provided in pyfftw.builders. Default values
used by the helper routines can be controlled as via
configuration variables.

FFTW Class

	
class pyfftw.FFTW(input_array, output_array, axes=(-1,), direction='FFTW_FORWARD', flags=('FFTW_MEASURE',), threads=1, planning_timelimit=None)

	FFTW is a class for computing a variety of discrete Fourier
transforms of multidimensional, strided arrays using the FFTW
library. The interface is designed to be somewhat pythonic, with
the correct transform being inferred from the dtypes of the passed
arrays.

The exact scheme may be either directly specified with the
direction parameter or inferred from the dtypes and relative
shapes of the input arrays. Information on which shapes and dtypes
imply which transformations is available in the FFTW schemes. If a match is found, the plan corresponding to that
scheme is created, operating on the arrays that are passed in. If no
scheme can be created then a ValueError is raised.

The actual transformation is performed by calling the
execute() method.

The arrays can be updated by calling the
update_arrays() method.

The created instance of the class is itself callable, and can perform
the execution of the FFT, both with or without array updates, returning
the result of the FFT. Unlike calling the execute()
method, calling the class instance will also optionally normalise the
output as necessary. Additionally, calling with an input array update
will also coerce that array to be the correct dtype.

See the documentation on the __call__() method
for more information.

Arguments:

	input_array and output_array should be numpy arrays.
The contents of these arrays will be destroyed by the planning
process during initialisation. Information on supported
dtypes for the arrays is given below.

	axes describes along which axes the DFT should be taken.
This should be a valid list of axes. Repeated axes are
only transformed once. Invalid axes will raise an IndexError
exception. This argument is equivalent to the same
argument in numpy.fft.fftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn], except for the fact that
the behaviour of repeated axes is different (numpy.fft
will happily take the fft of the same axis if it is repeated
in the axes argument). Rudimentary testing has suggested
this is down to the underlying FFTW library and so unlikely
to be fixed in these wrappers.

	The direction parameter describes what sort of
transformation the object should compute. This parameter is
poorly named for historical reasons: older versions of pyFFTW
only supported forward and backward transformations, for which
this name made sense. Since then pyFFTW has been expanded to
support real to real transforms as well and the name is not
quite as descriptive.

direction should either be a string, or, in the case of
multiple real transforms, a list of strings. The two values
corresponding to the DFT are

	'FFTW_FORWARD', which is the forward discrete Fourier
transform, and

	'FFTW_BACKWARD', which is the backward discrete Fourier
transform.

Note that, for the two above options, only the Complex schemes
allow a free choice for direction. The direction must
agree with the the table below if a Real
scheme is used, otherwise a ValueError is raised.

Alternatively, if you are interested in one of the real to real
transforms, then pyFFTW supports four different discrete cosine
transforms:

	'FFTW_REDFT00',

	'FFTW_REDFT01',

	'FFTW_REDFT10', and

	'FFTW_REDFT01',

and four discrete sine transforms:

	'FFTW_RODFT00',

	'FFTW_RODFT01',

	'FFTW_RODFT10', and

	'FFTW_RODFT01'.

pyFFTW uses the same naming convention for these flags as FFTW:
the 'REDFT' part of the name is an acronym for ‘real even
discrete Fourier transform, and, similarly, 'RODFT' stands
for ‘real odd discrete Fourier transform’. The trailing '0'
is notation for even data (in terms of symmetry) and the
trailing '1' is for odd data.

Unlike the plain discrete Fourier transform, one may specify a
different real to real transformation over each axis: for example,

will create a transformation across the first and last axes
with a discrete cosine transform over the first and a discrete
sine transform over the last.

Unfortunately, since this class is ultimately just a wrapper
for various transforms implemented in FFTW, one cannot combine
real transformations with real to complex transformations in a
single object.

	flags is a list of strings and is a subset of the
flags that FFTW allows for the planners:

	'FFTW_ESTIMATE', 'FFTW_MEASURE', 'FFTW_PATIENT' and
'FFTW_EXHAUSTIVE' are supported. These describe the
increasing amount of effort spent during the planning
stage to create the fastest possible transform.
Usually 'FFTW_MEASURE' is a good compromise. If no flag
is passed, the default 'FFTW_MEASURE' is used.

	'FFTW_UNALIGNED' is supported.
This tells FFTW not to assume anything about the
alignment of the data and disabling any SIMD capability
(see below).

	'FFTW_DESTROY_INPUT' is supported.
This tells FFTW that the input array can be destroyed during
the transform, sometimes allowing a faster algorithm to be
used. The default behaviour is, if possible, to preserve the
input. In the case of the 1D Backwards Real transform, this
may result in a performance hit. In the case of a backwards
real transform for greater than one dimension, it is not
possible to preserve the input, making this flag implicit
in that case. A little more on this is given
below.

	'FFTW_WISDOM_ONLY' is supported.
This tells FFTW to raise an error if no plan for this transform
and data type is already in the wisdom. It thus provides a method
to determine whether planning would require additional effort or the
cached wisdom can be used. This flag should be combined with the
various planning-effort flags ('FFTW_ESTIMATE',
'FFTW_MEASURE', etc.); if so, then an error will be raised if
wisdom derived from that level of planning effort (or higher) is
not present. If no planning-effort flag is used, the default of
'FFTW_ESTIMATE' is assumed.
Note that wisdom is specific to all the parameters, including the
data alignment. That is, if wisdom was generated with input/output
arrays with one specific alignment, using 'FFTW_WISDOM_ONLY'
to create a plan for arrays with any different alignment will
cause the 'FFTW_WISDOM_ONLY' planning to fail. Thus it is
important to specifically control the data alignment to make the
best use of 'FFTW_WISDOM_ONLY'.

The FFTW planner flags documentation [http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags]
has more information about the various flags and their impact.
Note that only the flags documented here are supported.

	threads tells the wrapper how many threads to use
when invoking FFTW, with a default of 1. If the number
of threads is greater than 1, then the GIL is released
by necessity.

	planning_timelimit is a floating point number that
indicates to the underlying FFTW planner the maximum number of
seconds it should spend planning the FFT. This is a rough
estimate and corresponds to calling of fftw_set_timelimit()
(or an equivalent dependent on type) in the underlying FFTW
library. If None is set, the planner will run indefinitely
until all the planning modes allowed by the flags have been
tried. See the FFTW planner flags page [http://www.fftw.org/fftw3_doc/Planner-Flags.html#Planner-Flags]
for more information on this.

Schemes

The currently supported full (so not discrete sine or discrete
cosine) DFT schemes are as follows:

	Type

	input_array.dtype

	output_array.dtype

	Direction

	Complex

	complex64

	complex64

	Both

	Complex

	complex128

	complex128

	Both

	Complex

	clongdouble

	clongdouble

	Both

	Real

	float32

	complex64

	Forwards

	Real

	float64

	complex128

	Forwards

	Real

	longdouble

	clongdouble

	Forwards

	Real1

	complex64

	float32

	Backwards

	Real1

	complex128

	float64

	Backwards

	Real1

	clongdouble

	longdouble

	Backwards

1 Note that the Backwards Real transform for the case
in which the dimensionality of the transform is greater than 1
will destroy the input array. This is inherent to FFTW and the only
general work-around for this is to copy the array prior to
performing the transform. In the case where the dimensionality
of the transform is 1, the default is to preserve the input array.
This is different from the default in the underlying library, and
some speed gain may be achieved by allowing the input array to
be destroyed by passing the 'FFTW_DESTROY_INPUT'
flag.

The discrete sine and discrete cosine transforms are supported
for all three real types.

clongdouble typically maps directly to complex256
or complex192, and longdouble to float128 or
float96, dependent on platform.

The relative shapes of the arrays should be as follows:

	For a Complex transform, output_array.shape == input_array.shape

	For a Real transform in the Forwards direction, both the following
should be true:

	output_array.shape[axes][-1] == input_array.shape[axes][-1]//2 + 1

	All the other axes should be equal in length.

	For a Real transform in the Backwards direction, both the following
should be true:

	input_array.shape[axes][-1] == output_array.shape[axes][-1]//2 + 1

	All the other axes should be equal in length.

In the above expressions for the Real transform, the axes
arguments denotes the unique set of axes on which we are taking
the FFT, in the order passed. It is the last of these axes that
is subject to the special case shown.

The shapes for the real transforms corresponds to those
stipulated by the FFTW library. Further information can be
found in the FFTW documentation on the real DFT [http://www.fftw.org/fftw3_doc/Guru-Real_002ddata-DFTs.html].

The actual arrangement in memory is arbitrary and the scheme
can be planned for any set of strides on either the input
or the output. The user should not have to worry about this
and any valid numpy array should work just fine.

What is calculated is exactly what FFTW calculates.
Notably, this is an unnormalized transform so should
be scaled as necessary (fft followed by ifft will scale
the input by N, the product of the dimensions along which
the DFT is taken). For further information, see the
FFTW documentation [http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html].

The FFTW library benefits greatly from the beginning of each
DFT axes being aligned on the correct byte boundary, enabling
SIMD instructions. By default, if the data begins on such a
boundary, then FFTW will be allowed to try and enable
SIMD instructions. This means that all future changes to
the data arrays will be checked for similar alignment. SIMD
instructions can be explicitly disabled by setting the
FFTW_UNALIGNED flags, to allow for updates with unaligned
data.

byte_align() and
empty_aligned() are two methods
included with this module for producing aligned arrays.

The optimum alignment for the running platform is provided
by pyfftw.simd_alignment, though a different alignment
may still result in some performance improvement. For example,
if the processor supports AVX (requiring 32-byte alignment) as
well as SSE (requiring 16-byte alignment), then if the array
is 16-byte aligned, SSE will still be used.

It’s worth noting that just being aligned may not be sufficient
to create the fastest possible transform. For example, if the
array is not contiguous (i.e. certain axes are displaced in
memory), it may be faster to plan a transform for a contiguous
array, and then rely on the array being copied in before the
transform (which pyfftw.FFTW will handle for you when
accessed through __call__()).

	
N

	The product of the lengths of the DFT over all DFT axes.
1/N is the normalisation constant. For any input array A,
and for any set of axes, 1/N * ifft(fft(A)) = A

	
simd_aligned

	Return whether or not this FFTW object requires simd aligned
input and output data.

	
input_alignment

	Returns the byte alignment of the input arrays for which the
FFTW object was created.

Input array updates with arrays that are not aligned on this
byte boundary will result in a ValueError being raised, or
a copy being made if the __call__()
interface is used.

	
output_alignment

	Returns the byte alignment of the output arrays for which the
FFTW object was created.

Output array updates with arrays that are not aligned on this
byte boundary will result in a ValueError being raised.

	
flags

	Return which flags were used to construct the FFTW object.

This includes flags that were added during initialisation.

	
input_array

	Return the input array that is associated with the FFTW
instance.

	
output_array

	Return the output array that is associated with the FFTW
instance.

	
input_shape

	Return the shape of the input array for which the FFT is planned.

	
output_shape

	Return the shape of the output array for which the FFT is planned.

	
input_strides

	Return the strides of the input array for which the FFT is planned.

	
output_strides

	Return the strides of the output array for which the FFT is planned.

	
input_dtype

	Return the dtype of the input array for which the FFT is planned.

	
output_dtype

	Return the shape of the output array for which the FFT is planned.

	
direction

	Return the planned FFT direction. Either ‘FFTW_FORWARD’,
‘FFTW_BACKWARD’, or a list of real transform codes of the form
[‘FFTW_R*DFT**’].

	
axes

	Return the axes for the planned FFT in canonical form. That is, as
a tuple of positive integers. The order in which they were passed
is maintained.

	
ortho

	If ortho=True both the forward and inverse transforms are scaled by
1/sqrt(N).

	
normalise_idft

	If normalise_idft=True, the inverse transform is scaled by 1/N.

	
__call__()

	
	__call__(input_array=None, output_array=None, normalise_idft=True,
	ortho=False)

Calling the class instance (optionally) updates the arrays, then
calls execute(), before optionally normalising
the output and returning the output array.

It has some built-in helpers to make life simpler for the calling
functions (as distinct from manually updating the arrays and
calling execute()).

If normalise_idft is True (the default), then the output from
an inverse DFT (i.e. when the direction flag is 'FFTW_BACKWARD') is
scaled by 1/N, where N is the product of the lengths of input array on
which the FFT is taken. If the direction is 'FFTW_FORWARD', this
flag makes no difference to the output array.

If ortho is True, then the output of both forward
and inverse DFT operations is scaled by 1/sqrt(N), where N is the
product of the lengths of input array on which the FFT is taken. This
ensures that the DFT is a unitary operation, meaning that it satisfies
Parseval’s theorem (the sum of the squared values of the transform
output is equal to the sum of the squared values of the input). In
other words, the energy of the signal is preserved.

If either normalise_idft or ortho are True, then
ifft(fft(A)) = A.

When input_array is something other than None, then the passed in
array is coerced to be the same dtype as the input array used when the
class was instantiated, the byte-alignment of the passed in array is
made consistent with the expected byte-alignment and the striding is
made consistent with the expected striding. All this may, but not
necessarily, require a copy to be made.

As noted in the scheme table, if the FFTW
instance describes a backwards real transform of more than one
dimension, the contents of the input array will be destroyed. It is
up to the calling function to make a copy if it is necessary to
maintain the input array.

output_array is always used as-is if possible. If the dtype, the
alignment or the striding is incorrect for the FFTW object, then a
ValueError is raised.

The coerced input array and the output array (as appropriate) are
then passed as arguments to
update_arrays(), after which
execute() is called, and then normalisation
is applied to the output array if that is desired.

Note that it is possible to pass some data structure that can be
converted to an array, such as a list, so long as it fits the data
requirements of the class instance, such as array shape.

Other than the dtype and the alignment of the passed in arrays, the
rest of the requirements on the arrays mandated by
update_arrays() are enforced.

A None argument to either keyword means that that array is not
updated.

The result of the FFT is returned. This is the same array that is used
internally and will be overwritten again on subsequent calls. If you
need the data to persist longer than a subsequent call, you should
copy the returned array.

	
update_arrays(new_input_array, new_output_array)

	Update the arrays upon which the DFT is taken.

The new arrays should be of the same dtypes as the originals, the same
shapes as the originals and should have the same strides between axes.
If the original data was aligned so as to allow SIMD instructions
(e.g. by being aligned on a 16-byte boundary), then the new array must
also be aligned so as to allow SIMD instructions (assuming, of
course, that the FFTW_UNALIGNED flag was not enabled).

The byte alignment requirement extends to requiring natural
alignment in the non-SIMD cases as well, but this is much less
stringent as it simply means avoiding arrays shifted by, say,
a single byte (which invariably takes some effort to
achieve!).

If all these conditions are not met, a ValueError will
be raised and the data will not be updated (though the
object will still be in a sane state).

	
execute()

	Execute the planned operation, taking the correct kind of FFT of
the input array (i.e. FFTW.input_array),
and putting the result in the output array (i.e.
FFTW.output_array).

	
get_input_array()

	Return the input array that is associated with the FFTW
instance.

Deprecated since 0.10. Consider using the FFTW.input_array
property instead.

	
get_output_array()

	Return the output array that is associated with the FFTW
instance.

Deprecated since 0.10. Consider using the FFTW.output_array
property instead.

Wisdom Functions

Functions for dealing with FFTW’s ability to export and restore plans,
referred to as wisdom. For further information, refer to the FFTW
wisdom documentation [http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans].

	
pyfftw.export_wisdom()

	Return the FFTW wisdom as a tuple of strings.

The first string in the tuple is the string for the double precision
wisdom, the second is for single precision, and the third for long double
precision. If any of the precisions is not supported in the build, the
string is empty.

The tuple that is returned from this function can be used as the argument
to import_wisdom().

	
pyfftw.import_wisdom(wisdom)

	Function that imports wisdom from the passed tuple
of strings.

The first string in the tuple is the string for the double
precision wisdom. The second string in the tuple is the string
for the single precision wisdom. The third string in the tuple
is the string for the long double precision wisdom.

The tuple that is returned from export_wisdom()
can be used as the argument to this function.

This function returns a tuple of boolean values indicating
the success of loading each of the wisdom types (double, float
and long double, in that order).

	
pyfftw.forget_wisdom()

	Forget all the accumulated wisdom.

Utility Functions

	
pyfftw.simd_alignment

	An integer giving the optimum SIMD alignment in bytes, found by
inspecting the CPU (e.g. if AVX is supported, its value will be 32).

This can be used as n in the arguments for byte_align(),
empty_aligned(), zeros_aligned(), and ones_aligned() to
create optimally aligned arrays for the running platform.

	
pyfftw.byte_align(array, n=None, dtype=None)

	Function that takes a numpy array and checks it is aligned on an n-byte
boundary, where n is an optional parameter. If n is not provided
then this function will inspect the CPU to determine alignment. If the
array is aligned then it is returned without further ado. If it is not
aligned then a new array is created and the data copied in, but aligned
on the n-byte boundary.

dtype is an optional argument that forces the resultant array to be
of that dtype.

	
pyfftw.empty_aligned(shape, dtype='float64', order='C', n=None)

	Function that returns an empty numpy array that is n-byte aligned,
where n is determined by inspecting the CPU if it is not
provided.

The alignment is given by the final optional argument, n. If
n is not provided then this function will inspect the CPU to
determine alignment. The rest of the arguments are as per
numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty].

	
pyfftw.zeros_aligned(shape, dtype='float64', order='C', n=None)

	Function that returns a numpy array of zeros that is n-byte aligned,
where n is determined by inspecting the CPU if it is not
provided.

The alignment is given by the final optional argument, n. If
n is not provided then this function will inspect the CPU to
determine alignment. The rest of the arguments are as per
numpy.zeros() [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros].

	
pyfftw.ones_aligned(shape, dtype='float64', order='C', n=None)

	Function that returns a numpy array of ones that is n-byte aligned,
where n is determined by inspecting the CPU if it is not
provided.

The alignment is given by the final optional argument, n. If
n is not provided then this function will inspect the CPU to
determine alignment. The rest of the arguments are as per
numpy.ones() [https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones].

	
pyfftw.is_byte_aligned()

	is_n_byte_aligned(array, n=None)

Function that takes a numpy array and checks it is aligned on an n-byte
boundary, where n is an optional parameter, returning True if it is,
and False if it is not. If n is not provided then this function will
inspect the CPU to determine alignment.

	
pyfftw.n_byte_align(array, n, dtype=None)

	This function is deprecated: byte_align should be used instead.

Function that takes a numpy array and checks it is aligned on an n-byte
boundary, where n is an optional parameter. If n is not provided
then this function will inspect the CPU to determine alignment. If the
array is aligned then it is returned without further ado. If it is not
aligned then a new array is created and the data copied in, but aligned
on the n-byte boundary.

dtype is an optional argument that forces the resultant array to be
of that dtype.

	
pyfftw.n_byte_align_empty(shape, n, dtype='float64', order='C')

	This function is deprecated: empty_aligned should be used
instead.

Function that returns an empty numpy array that is n-byte aligned.

The alignment is given by the first optional argument, n. If
n is not provided then this function will inspect the CPU to
determine alignment. The rest of the arguments are as per
numpy.empty() [https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty].

	
pyfftw.is_n_byte_aligned(array, n)

	This function is deprecated: is_byte_aligned should be used
instead.

Function that takes a numpy array and checks it is aligned on an n-byte
boundary, where n is a passed parameter, returning True if it is,
and False if it is not.

	
pyfftw.next_fast_len(target)

	Find the next fast transform length for FFTW.

FFTW has efficient functions for transforms of length
2**a * 3**b * 5**c * 7**d * 11**e * 13**f, where e + f is either 0 or 1.

	Parameters

	target (int [https://docs.python.org/3/library/functions.html#int]) – Length to start searching from. Must be a positive integer.

	Returns

	out – The first fast length greater than or equal to target.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

On a particular machine, an FFT of prime length takes 2.1 ms:

>>> from pyfftw.interfaces import scipy_fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = numpy.random.randn(min_len)
>>> b = scipy_fftpack.fft(a)

Zero-padding to the next fast length reduces computation time to
406 us, a speedup of ~5 times:

>>> next_fast_len(min_len)
10080
>>> b = scipy_fftpack.fft(a, 10080)

Rounding up to the next power of 2 is not optimal, taking 598 us to
compute, 1.5 times as long as the size selected by next_fast_len.

>>> b = fftpack.fft(a, 16384)

Similar speedups will occur for pre-planned FFTs as generated via
pyfftw.builders.

FFTW Configuration

	
pyfftw.config.NUM_THREADS

	This variable controls the default number of threads used by the functions
in pyfftw.builders and pyfftw.interfaces.

The default value is read from the environment variable
PYFFTW_NUM_THREADS. If this variable is undefined and the user’s
underlying FFTW library was built using OpenMP threading, the number of
threads will be read from the environment variable OMP_NUM_THREADS
instead. If neither environment variable is defined, the default value is 1.

If the specified value is <= 0, the library will use
multiprocessing.cpu_count() [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count] to determine the number of threads.

The user can modify the value at run time by assigning to this variable.

	
pyfftw.config.PLANNER_EFFORT

	This variable controls the default planning effort used by the functions
in pyfftw.builders and pyfftw.interfaces.

The default value of is determined by reading from the environment variable
PYFFTW_PLANNER_EFFORT. If this environment variable is undefined, it
defaults to 'FFTW_ESTIMATE'.

The user can modify the value at run time by assigning to this variable.

pyfftw.builders - Get FFTW objects using a numpy.fft like interface

Overview

This module contains a set of functions that return
pyfftw.FFTW objects.

The interface to create these objects is mostly the same as
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], only instead of the call returning the result of the
FFT, a pyfftw.FFTW object is returned that performs that FFT
operation when it is called. Users should be familiar with
numpy.fft before reading on.

In the case where the shape argument, s (or n in the
1-dimensional case), dictates that the passed-in input array be copied
into a different processing array, the returned object is an
instance of a child class of pyfftw.FFTW,
_FFTWWrapper, which wraps the call
method in order to correctly perform that copying. That is, subsequent
calls to the object (i.e. through
__call__()) should occur
with an input array that can be sliced to the same size as the
expected internal array. Note that a side effect of this is that
subsequent calls to the object can be made with an array that is
bigger than the original (but not smaller).

Only the call method is wrapped; update_arrays()
still expects an array with the correct size, alignment, dtype etc for
the pyfftw.FFTW object.

When the internal input array is bigger along any axis than the input
array that is passed in (due to s dictating a larger size), then the
extra entries are padded with zeros. This is a one time action. If the
internal input array is then extracted using
pyfftw.FFTW.input_array, it is possible to
persistently fill the padding space with whatever the user desires, so
subsequent calls with a new input only overwrite the values that aren’t
padding (even if the array that is used for the call is bigger than the
original - see the point above about bigger arrays being sliced to
fit).

The precision of the FFT operation is acquired from the input array.
If an array is passed in that is not of float type, or is of an
unknown float type, an attempt is made to convert the array to a
double precision array. This results in a copy being made.

If an array of the incorrect complexity is passed in (e.g. a complex
array is passed to a real transform routine, or vice-versa), then an
attempt is made to convert the array to an array of the correct
complexity. This results in a copy being made.

Although the array that is internal to the pyfftw.FFTW object
will be correctly loaded with the values within the input array, it is
not necessarily the case that the internal array is the input array.
The actual internal input array can always be retrieved with
pyfftw.FFTW.input_array.

The behavior of the norm parameter in all builder routines matches that
of the corresponding numpy.fft functions. In particular, if
norm == "backward" (alias of None) then the forward/direct FFT is
unscaled and the backward/inverse is scaled by 1/N, where N is the length of
the input array (for multidimensional FFTs it’s the product of the lengths of
each dimension). If norm == "ortho" then both the forward and the backward
FFTs are scaled by 1/sqrt(N). Finally, if norm == "forward" then the
forward FFT is scaled by 1/N and the backward is unscaled (exact opposite of
the "backward" case). The default case is norm == "backward".

In all three cases, using the same norm value for both the forward and the
backward FFT ensures roundtrip equality, i.e. that applying the forwad and
then the backward FFT to an input array returns the original array (up to
numerical accuracy).

Example:

>>> import pyfftw
>>> a = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft = pyfftw.builders.fft(a)
>>> a[:] = [1, 2, 3, 4]
>>> fft() # returns the output
array([10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])

More examples can be found in the tutorial.

Supported Functions and Caveats

The following functions are supported. They can be used with the
same calling signature as their respective functions in
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] or (in the case of real-to-real transforms)
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack].

Standard FFTs

	fft()

	ifft()

	fft2()

	ifft2()

	fftn()

	ifftn()

Real FFTs

	rfft()

	irfft()

	rfft2()

	irfft2()

	rfftn()

	irfftn()

DCTs and DSTs

	dct()

	dst()

The first caveat is that the dtype of the input array must match the
transform. For example, for fft and ifft, the dtype must
be complex, for rfft it must be real, and so on. The other point
to note from this is that the precision of the transform matches the
precision of the input array. So, if a single precision input array is
passed in, then a single precision transform will be used.

The second caveat is that repeated axes are handled differently; with
the returned pyfftw.FFTW object, axes that are repeated in the
axes argument are considered only once, as compared to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft]
in which repeated axes results in the DFT being taken along that axes
as many times as the axis occurs (this is down to the underlying
library).

Note that unless the auto_align_input argument to the function
is set to True, the 'FFTW_UNALIGNED' flag
is set in the returned pyfftw.FFTW object. This disables some
of the FFTW optimisations that rely on aligned arrays. Also worth
noting is that the auto_align_input flag only results in a copy
when calling the resultant pyfftw.FFTW object if the input
array is not already aligned correctly.

Additional Arguments

In addition to the arguments that are present with their complementary
functions in numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], each of these functions also offers the
following additional keyword arguments:

	overwrite_input: Whether or not the input array can be
overwritten during the transform. This sometimes results in a faster
algorithm being made available. It causes the 'FFTW_DESTROY_INPUT'
flag to be passed to the pyfftw.FFTW object. This flag is not
offered for the multi-dimensional inverse real transforms, as FFTW is
unable to not overwrite the input in that case.

	planner_effort: A string dictating how much effort is spent
in planning the FFTW routines. This is passed to the creation
of the pyfftw.FFTW object as an entry in the flags list.
They correspond to flags passed to the pyfftw.FFTW object.

The valid strings, in order of their increasing impact on the time
to compute are:
'FFTW_ESTIMATE', config.PLANNER_EFFORT (default), 'FFTW_PATIENT'
and 'FFTW_EXHAUSTIVE'.

The Wisdom [http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html]
that FFTW has accumulated or has loaded (through
pyfftw.import_wisdom()) is used during the creation of
pyfftw.FFTW objects.

	threads: The number of threads used to perform the FFT.

	auto_align_input: Correctly byte align the input array for optimal
usage of vector instructions. This can lead to a substantial speedup.

Setting this argument to True makes sure that the input array
is correctly aligned. It is possible to correctly byte align the array
prior to calling this function (using, for example,
pyfftw.byte_align()). If and only if a realignment is
necessary is a new array created. If a new array is created, it is
up to the calling code to acquire that new input array using
pyfftw.FFTW.input_array.

The resultant pyfftw.FFTW object that is created will be
designed to operate on arrays that are aligned. If the object is
called with an unaligned array, this would result in a copy. Despite
this, it may still be faster to set the auto_align_input flag
and incur a copy with unaligned arrays than to set up an object
that uses aligned arrays.

It’s worth noting that just being aligned may not be sufficient to
create the fastest possible transform. For example, if the array is not
contiguous (i.e. certain axes have gaps in memory between slices), it
may be faster to plan a transform for a contiguous array, and then rely
on the array being copied in before the transform (which
pyfftw.FFTW will handle for you). The auto_contiguous
argument controls whether this function also takes care of making sure
the array is contiguous or not.

	auto_contiguous: Make sure the input array is contiguous in
memory before performing the transform on it. If the array is not
contiguous, it is copied into an interim array. This is because it
is often faster to copy the data before the transform and then transform
a contiguous array than it is to try to take the transform of a
non-contiguous array. This is particularly true in conjunction with
the auto_align_input argument which is used to make sure that the
transform is taken of an aligned array.

Like auto_align_input, If a new array is created, it is
up to the calling code to acquire that new input array using
pyfftw.FFTW.input_array.

	avoid_copy: By default, these functions will always create a copy
(and sometimes more than one) of the passed in input array. This is
because the creation of the pyfftw.FFTW object generally
destroys the contents of the input array. Setting this argument to
True will try not to create a copy of the input array, likely
resulting in the input array being destroyed. If it is not possible
to create the object without a copy being made, a ValueError is
raised.

Example situations that require a copy, and so cause the exception
to be raised when this flag is set:

	The shape of the FFT input as dictated by s is
necessarily different from the shape of the passed-in array.

	The dtypes are incompatible with the FFT routine.

	The auto_contiguous or auto_align flags are True and
the input array is not already contiguous or aligned.

This argument is distinct from overwrite_input in that it only
influences a copy during the creation of the object. It changes no
flags in the pyfftw.FFTW object.

The exceptions raised by each of these functions are as per their
equivalents in numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], or as documented above.

The Functions

	
pyfftw.builders.dct(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, type=2)

	Return a pyfftw.FFTW object representing a 1D DCT.

The first three arguments and ‘type’ are as per
scipy.fftpack.dct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html#scipy.fftpack.dct]; the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.dst(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, type=2)

	Return a pyfftw.FFTW object representing a 1D DST.

The first three arguments and ‘type’ are as per
scipy.fftpack.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst]; the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.fft(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 1D FFT.

The first three arguments are as per numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.fft2(a, s=None, axes=(-2, -1), overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 2D FFT.

The first three arguments are as per numpy.fft.fft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.fftn(a, s=None, axes=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a n-D FFT.

The first three arguments are as per numpy.fft.fftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.ifft(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 1D
inverse FFT.

The first three arguments are as per numpy.fft.ifft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.ifft2(a, s=None, axes=(-2, -1), overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a
2D inverse FFT.

The first three arguments are as per numpy.fft.ifft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.ifftn(a, s=None, axes=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing an n-D
inverse FFT.

The first three arguments are as per numpy.fft.ifftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.irfft(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 1D
real inverse FFT.

The first three arguments are as per numpy.fft.irfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.irfft2(a, s=None, axes=(-2, -1), planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 2D
real inverse FFT.

The first three arguments are as per numpy.fft.irfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.irfftn(a, s=None, axes=None, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing an n-D
real inverse FFT.

The first three arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.rfft(a, n=None, axis=-1, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 1D
real FFT.

The first three arguments are as per numpy.fft.rfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.rfft2(a, s=None, axes=(-2, -1), overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing a 2D
real FFT.

The first three arguments are as per numpy.fft.rfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2];
the rest of the arguments are documented
in the module docs.

	
pyfftw.builders.rfftn(a, s=None, axes=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True, avoid_copy=False, norm=None)

	Return a pyfftw.FFTW object representing an n-D
real FFT.

The first three arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the module docs.

pyfftw.builders._utils - Helper functions for pyfftw.builders

A set of utility functions for use with the builders. Users should
not need to use the functions directly, but they are included here for
completeness and to aid with understanding of what is happening behind
the scenes.

Certainly, users may encounter instances of
_FFTWWrapper.

Everything documented in this module is not part of the public API
and may change in future versions.

	
class pyfftw.builders._utils._FFTWWrapper(input_array, output_array, axes=[-1], direction='FFTW_FORWARD', flags=['FFTW_MEASURE'], threads=1, input_array_slicer=None, FFTW_array_slicer=None, normalise_idft=True, ortho=False)

	A class that wraps pyfftw.FFTW, providing a slicer on the input
stage during calls to __call__().

The arguments are as per pyfftw.FFTW, but with the addition
of 2 keyword arguments: input_array_slicer and
FFTW_array_slicer.

These arguments represent 2 slicers: input_array_slicer slices
the input array that is passed in during a call to instances of this
class, and FFTW_array_slicer slices the internal array.

The arrays that are returned from both of these slicing operations
should be the same size. The data is then copied from the sliced
input array into the sliced internal array.

	
__call__(input_array=None, output_array=None, normalise_idft=None, ortho=None)

	Wrap pyfftw.FFTW.__call__() by firstly slicing the
passed-in input array and then copying it into a sliced version
of the internal array. These slicers are set at instantiation.

When input array is not None, this method always results in
a copy. Consequently, the alignment and dtype are maintained in
the internal array.

output_array and normalise_idft are passed through to
pyfftw.FFTW.__call__() untouched.

	
pyfftw.builders._utils._Xfftn(a, s, axes, overwrite_input, planner_effort, threads, auto_align_input, auto_contiguous, avoid_copy, inverse, real, normalise_idft=True, ortho=False, real_direction_flag=None)

	Generic transform interface for all the transforms. No
defaults exist. The transform must be specified exactly.

The argument real_direction_flag is a slight exception to this
rule: for backwards compatibility this function defaults to standard
Fourier transforms (and not the specialized real to real variants).
If this flag is set to one of the standard real transform types
(e.g., ‘FFTW_RODFT00’) then the arguments inverse and real
are ignored.

	
pyfftw.builders._utils._compute_array_shapes(a, s, axes, inverse, real)

	Given a passed in array a, and the rest of the arguments
(that have been fleshed out with
_cook_nd_args()), compute
the shape the input and output arrays need to be in order
to satisfy all the requirements for the transform. The input
shape may be different to the shape of a.

returns:
(input_shape, output_shape)

	
pyfftw.builders._utils._cook_nd_args(a, s=None, axes=None, invreal=False)

	Similar to numpy.fft.fftpack._cook_nd_args().

	
pyfftw.builders._utils._precook_1d_args(a, n, axis)

	Turn *(n, axis) into (s, axes)

	
pyfftw.builders._utils._setup_input_slicers(a_shape, input_shape)

	This function returns two slicers that are to be used to
copy the data from the input array to the FFTW object internal
array, which can then be passed to _FFTWWrapper:

(update_input_array_slicer, FFTW_array_slicer)

On calls to _FFTWWrapper objects,
the input array is copied in as:

FFTW_array[FFTW_array_slicer] = input_array[update_input_array_slicer]

pyfftw.interfaces - Drop in replacements for other FFT implementations

The pyfftw.interfaces package provides interfaces to pyfftw
that implement the API of other, more commonly used FFT libraries; specifically
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] and scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack]. The intention is
to satisfy two clear use cases:

	Simple, clean and well established interfaces to using pyfftw,
removing the requirement for users to know or understand about creating and
using pyfftw.FFTW objects, whilst still benefiting from most of the
speed benefits of FFTW.

	A library that can be dropped into code that is already written to
use a supported FFT library, with no significant change to the existing
code. The power of python allows this to be done at runtime to a third
party library, without changing any of that library’s code.

The pyfftw.interfaces implementation is designed to sacrifice a small
amount of the flexibility compared to accessing the pyfftw.FFTW
object directly, but implements a reasonable set of defaults and optional
tweaks that should satisfy most situations.

The precision of the transform that is used is selected from the array that
is passed in, defaulting to double precision if any type conversion is
required.

This module works by generating a pyfftw.FFTW object behind the
scenes using the pyfftw.builders interface, which is then executed.
There is therefore a potentially substantial overhead when a new plan needs
to be created. This is down to FFTW’s internal planner process.
After a specific transform has been planned once, subsequent calls in which
the input array is equivalent will be much faster, though still not without
potentially significant overhead. This overhead can be largely alleviated by
enabling the pyfftw.interfaces.cache functionality. However, even when
the cache is used, very small transforms may suffer a significant relative
slow-down not present when accessing pyfftw.FFTW directly (because the
transform time can be negligibly small compared to the fixed
pyfftw.interfaces overhead).

In addition, potentially extra copies of the input array might be made.

If speed or memory conservation is of absolutely paramount importance, the
suggestion is to use pyfftw.FFTW (which provides better control over
copies and so on), either directly or through pyfftw.builders. As
always, experimentation is the best guide to optimisation.

In practice, this means something like the following (taking
numpy_fft as an example):

>>> import pyfftw, numpy
>>> a = pyfftw.empty_aligned((128, 64), dtype='complex64', n=16)
>>> a[:] = numpy.random.randn(*a.shape) + 1j*numpy.random.randn(*a.shape)
>>> fft_a = pyfftw.interfaces.numpy_fft.fft2(a) # Will need to plan

>>> b = pyfftw.empty_aligned((128, 64), dtype='complex64', n=16)
>>> b[:] = a
>>> fft_b = pyfftw.interfaces.numpy_fft.fft2(b) # Already planned, so faster

>>> c = pyfftw.empty_aligned(132, dtype='complex128', n=16)
>>> fft_c = pyfftw.interfaces.numpy_fft.fft(c) # Needs a new plan
>>> c[:] = numpy.random.randn(*c.shape) + 1j*numpy.random.randn(*c.shape)

>>> pyfftw.interfaces.cache.enable()
>>> fft_a = pyfftw.interfaces.numpy_fft.fft2(a) # still planned
>>> fft_b = pyfftw.interfaces.numpy_fft.fft2(b) # much faster, from the cache

The usual wisdom import and export functions work well for the case where
the initial plan might be prohibitively expensive. Just use
pyfftw.export_wisdom() and pyfftw.import_wisdom() as needed after
having performed the transform once.

Implemented Functions

The implemented functions are listed below. numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] is implemented by
pyfftw.interfaces.numpy_fft, scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] by
pyfftw.interfaces.scipy_fftpack and scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] by
pyfftw.interfaces.scipy_fft. All the implemented functions are extended
by the use of additional arguments, which are
documented below.

Not all the functions provided by numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] and
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] are implemented by pyfftw.interfaces. In the case
where a function is not implemented, the function is imported into the
namespace from the corresponding library. This means that all the documented
functionality of the library is provided through pyfftw.interfaces.

One known caveat is that repeated axes are handled differently. Axes that are
repeated in the axes argument are considered only once and without error;
as compared to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] in which repeated axes results in the DFT being
taken along that axes as many times as the axis occurs, or to scipy [https://docs.scipy.org/doc/scipy/index.html#module-scipy]
where an error is raised.

numpy_fft

	pyfftw.interfaces.numpy_fft.fft()

	pyfftw.interfaces.numpy_fft.ifft()

	pyfftw.interfaces.numpy_fft.fft2()

	pyfftw.interfaces.numpy_fft.ifft2()

	pyfftw.interfaces.numpy_fft.fftn()

	pyfftw.interfaces.numpy_fft.ifftn()

	pyfftw.interfaces.numpy_fft.rfft()

	pyfftw.interfaces.numpy_fft.irfft()

	pyfftw.interfaces.numpy_fft.rfft2()

	pyfftw.interfaces.numpy_fft.irfft2()

	pyfftw.interfaces.numpy_fft.rfftn()

	pyfftw.interfaces.numpy_fft.irfftn()

	pyfftw.interfaces.numpy_fft.hfft()

	pyfftw.interfaces.numpy_fft.ihfft()

scipy_fft

	pyfftw.interfaces.scipy_fft.fft()

	pyfftw.interfaces.scipy_fft.ifft()

	pyfftw.interfaces.scipy_fft.fft2()

	pyfftw.interfaces.scipy_fft.ifft2()

	pyfftw.interfaces.scipy_fft.fftn()

	pyfftw.interfaces.scipy_fft.ifftn()

	pyfftw.interfaces.scipy_fft.rfft()

	pyfftw.interfaces.scipy_fft.irfft()

	pyfftw.interfaces.scipy_fft.rfft2()

	pyfftw.interfaces.scipy_fft.irfft2()

	pyfftw.interfaces.scipy_fft.rfftn()

	pyfftw.interfaces.scipy_fft.irfftn()

	pyfftw.interfaces.scipy_fft.hfft()

	pyfftw.interfaces.scipy_fft.ihfft()

	pyfftw.interfaces.scipy_fft.next_fast_len()

scipy_fftpack

	pyfftw.interfaces.scipy_fftpack.fft()

	pyfftw.interfaces.scipy_fftpack.ifft()

	pyfftw.interfaces.scipy_fftpack.fft2()

	pyfftw.interfaces.scipy_fftpack.ifft2()

	pyfftw.interfaces.scipy_fftpack.fftn()

	pyfftw.interfaces.scipy_fftpack.ifftn()

	pyfftw.interfaces.scipy_fftpack.rfft()

	pyfftw.interfaces.scipy_fftpack.irfft()

	pyfftw.interfaces.scipy_fftpack.next_fast_len()

dask_fft

	pyfftw.interfaces.dask_fft.fft()

	pyfftw.interfaces.dask_fft.ifft()

	pyfftw.interfaces.dask_fft.fft2()

	pyfftw.interfaces.dask_fft.ifft2()

	pyfftw.interfaces.dask_fft.fftn()

	pyfftw.interfaces.dask_fft.ifftn()

	pyfftw.interfaces.dask_fft.rfft()

	pyfftw.interfaces.dask_fft.irfft()

	pyfftw.interfaces.dask_fft.rfft2()

	pyfftw.interfaces.dask_fft.irfft2()

	pyfftw.interfaces.dask_fft.rfftn()

	pyfftw.interfaces.dask_fft.irfftn()

	pyfftw.interfaces.dask_fft.hfft()

	pyfftw.interfaces.dask_fft.ihfft()

Additional Arguments

In addition to the equivalent arguments in numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft]
and scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack], all these functions also add several additional
arguments for finer control over the FFT. These additional arguments are
largely a subset of the keyword arguments in pyfftw.builders with a few
exceptions and with different defaults.

	overwrite_input: Whether or not the input array can be
overwritten during the transform. This sometimes results in a faster
algorithm being made available. It causes the 'FFTW_DESTROY_INPUT'
flag to be passed to the intermediate pyfftw.FFTW object.
Unlike with pyfftw.builders, this argument is included with
every function in this package.

In scipy_fftpack and
scipy_fft, this argument is replaced by
overwrite_x, to which it is equivalent (albeit at the same position).

The default is False to be consistent with numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft].

	planner_effort: A string dictating how much effort is spent
in planning the FFTW routines. This is passed to the creation
of the intermediate pyfftw.FFTW object as an entry
in the flags list. They correspond to flags passed to the
pyfftw.FFTW object.

The valid strings, in order of their increasing impact on the time
to compute are:
'FFTW_ESTIMATE', 'FFTW_MEASURE' (default), 'FFTW_PATIENT'
and 'FFTW_EXHAUSTIVE'.

The Wisdom [http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html]
that FFTW has accumulated or has loaded (through
pyfftw.import_wisdom()) is used during the creation of
pyfftw.FFTW objects.

Note that the first time planning stage can take a substantial amount
of time. For this reason, the default is to use 'FFTW_ESTIMATE', which
potentially results in a slightly suboptimal plan being used, but with
a substantially quicker first-time planner step.

	threads: The number of threads used to perform the FFT.

In scipy_fft, this argument is replaced by
workers, which serves the same purpose, but is also compatible with the
scipy.fft.set_workers() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_workers.html#scipy.fft.set_workers] context manager.

The default is 1.

	auto_align_input: Correctly byte align the input array for optimal
usage of vector instructions. This can lead to a substantial speedup.

This argument being True makes sure that the input array
is correctly aligned. It is possible to correctly byte align the array
prior to calling this function (using, for example,
pyfftw.byte_align()). If and only if a realignment is
necessary is a new array created.

It’s worth noting that just being aligned may not be sufficient to
create the fastest possible transform. For example, if the array is not
contiguous (i.e. certain axes have gaps in memory between slices), it may
be faster to plan a transform for a contiguous array, and then rely on
the array being copied in before the transform (which
pyfftw.FFTW will handle for you). The auto_contiguous
argument controls whether this function also takes care of making sure
the array is contiguous or not.

The default is True.

	auto_contiguous: Make sure the input array is contiguous in
memory before performing the transform on it. If the array is not
contiguous, it is copied into an interim array. This is because it
is often faster to copy the data before the transform and then transform
a contiguous array than it is to try to take the transform of a
non-contiguous array. This is particularly true in conjunction with
the auto_align_input argument which is used to make sure that the
transform is taken of an aligned array.

The default is True.

Caching

During calls to functions implemented in pyfftw.interfaces, a
pyfftw.FFTW object is necessarily created. Although the time to
create a new pyfftw.FFTW is short (assuming that the planner
possesses the necessary wisdom to create the plan immediately), it may
still take longer than a short transform.

This module implements a method by which objects that are created through
pyfftw.interfaces are temporarily cached. If an equivalent
transform is then performed within a short period, the object is acquired
from the cache rather than a new one created. The equivalency is quite
conservative and in practice means that if any of the arguments change, or
if the properties of the array (shape, strides, dtype) change in any way, then
the cache lookup will fail.

The cache temporarily stores a copy of any interim pyfftw.FFTW
objects that are created. If they are not used for some period of time,
which can be set with pyfftw.interfaces.cache.set_keepalive_time(),
then they are removed from the cache (liberating any associated memory).
The default keepalive time is 0.1 seconds.

Enable the cache by calling pyfftw.interfaces.cache.enable().
Disable it by calling pyfftw.interfaces.cache.disable(). By default,
the cache is disabled.

Note that even with the cache enabled, there is a fixed overhead associated
with lookups. This means that for small transforms, the overhead may exceed
the transform. At this point, it’s worth looking at using pyfftw.FFTW
directly.

When the cache is enabled, the module spawns a new thread to keep track
of the objects. If threading [https://docs.python.org/3/library/threading.html#module-threading] is not available, then the cache
is not available and trying to use it will raise an ImportError exception.

The actual implementation of the cache is liable to change, but the
documented API is stable.

	
pyfftw.interfaces.cache.disable()

	Disable the cache.

	
pyfftw.interfaces.cache.enable()

	Enable the cache.

	
pyfftw.interfaces.cache.set_keepalive_time(keepalive_time)

	Set the minimum time in seconds for which any pyfftw.FFTW object
in the cache is kept alive.

When the cache is enabled, the interim objects that are used through
a pyfftw.interfaces function are cached for the time set through
this function. If the object is not used for the that time, it is
removed from the cache. Using the object zeros the timer.

The time is not precise, and sets a minimum time to be alive. In
practice, it may be quite a bit longer before the object is
deleted from the cache (due to implementational details - e.g. contention
from other threads).

numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] interface

This module implements those functions that replace aspects of the
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] module. This module provides the entire documented namespace
of numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], but those functions that are not included here are imported
directly from numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft].

It is notable that unlike numpy.fftpack, these functions will generally
return an output array with the same precision as the input array, and the
transform that is chosen is chosen based on the precision of the input array.
That is, if the input array is 32-bit floating point, then the transform will
be 32-bit floating point and so will the returned array. Half precision input
will be converted to single precision. Otherwise, if any type conversion is
required, the default will be double precision. If pyFFTW was not built with
support for double precision, the default is long double precision. If that is not
available, it defaults to single precision.

One known caveat is that repeated axes are handled differently to
numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft]; axes that are repeated in the axes argument are considered
only once, as compared to numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft] in which repeated axes results in
the DFT being taken along that axes as many times as the axis occurs.

The exceptions raised by each of these functions are mostly as per their
equivalents in numpy.fft [https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft], though there are some corner cases in
which this may not be true.

	
pyfftw.interfaces.numpy_fft.fft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D FFT.

The first four arguments are as per numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.fft2(a, s=None, axes=(-2, -1), norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D FFT.

The first four arguments are as per numpy.fft.fft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.fftn(a, s=None, axes=None, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D FFT.

The first four arguments are as per numpy.fft.fftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.hfft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D FFT of a signal with hermitian symmetry.
This yields a real output spectrum. See numpy.fft.hfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft]
for more information.

The first four arguments are as per numpy.fft.hfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.ifft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D inverse FFT.

The first four arguments are as per numpy.fft.ifft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.ifft2(a, s=None, axes=(-2, -1), norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D inverse FFT.

The first four arguments are as per numpy.fft.ifft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.ifftn(a, s=None, axes=None, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D inverse FFT.

The first four arguments are as per numpy.fft.ifftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.ihfft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D inverse FFT of a real-spectrum, yielding
a signal with hermitian symmetry. See numpy.fft.ihfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft]
for more information.

The first four arguments are as per numpy.fft.ihfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.irfft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D real inverse FFT.

The first four arguments are as per numpy.fft.irfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.irfft2(a, s=None, axes=(-2, -1), norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D real inverse FFT.

The first four arguments are as per numpy.fft.irfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.irfftn(a, s=None, axes=None, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D real inverse FFT.

The first four arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.rfft(a, n=None, axis=-1, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D real FFT.

The first four arguments are as per numpy.fft.rfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.rfft2(a, s=None, axes=(-2, -1), norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D real FFT.

The first four arguments are as per numpy.fft.rfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.numpy_fft.rfftn(a, s=None, axes=None, norm=None, overwrite_input=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D real FFT.

The first four arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the additional arguments docs.

scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] interface

This module implements those functions that replace aspects of the
scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] module. This module provides the entire documented namespace
of scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft], but those functions that are not included here are
imported directly from scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft].

The exceptions raised by each of these functions are mostly as per their
equivalents in scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft], though there are some corner cases in which
this may not be true.

Some corner (mis)usages of scipy.fft [https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft] may not transfer neatly.
For example, using scipy.fft.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2] with a non 1D array and
a 2D s argument will return without exception whereas
pyfftw.interfaces.scipy_fft.fft2() will raise a ValueError.

	
pyfftw.interfaces.scipy_fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D FFT.

The first six arguments are as per scipy.fft.fft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D FFT.

The first six arguments are as per scipy.fft.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.fftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D FFT.

The first six arguments are as per scipy.fft.fftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.hfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D Hermitian FFT.

The first six arguments are as per scipy.fft.hfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D inverse FFT.

The first six arguments are as per scipy.fft.ifft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D inverse FFT.

The first six arguments are as per scipy.fft.ifft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2];
the rest of the arguments are documented in the
additional argument docs.

	
pyfftw.interfaces.scipy_fft.ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D inverse FFT.

The first six arguments are as per scipy.fft.ifftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D Hermitian inverse FFT.

The first six arguments are as per scipy.fft.ihfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D real inverse FFT.

The first six arguments are as per scipy.fft.irfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.irfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D real inverse FFT.

The first six arguments are as per scipy.fft.irfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2];
the rest of the arguments are documented in the
additional argument docs.

	
pyfftw.interfaces.scipy_fft.irfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D real inverse FFT.

The first six arguments are as per scipy.fft.irfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.next_fast_len(target)

	Find the next fast transform length for FFTW.

FFTW has efficient functions for transforms of length
2**a * 3**b * 5**c * 7**d * 11**e * 13**f, where e + f is either 0 or 1.

	Parameters

	target (int [https://docs.python.org/3/library/functions.html#int]) – Length to start searching from. Must be a positive integer.

	Returns

	out – The first fast length greater than or equal to target.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

On a particular machine, an FFT of prime length takes 2.1 ms:

>>> from pyfftw.interfaces import scipy_fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = numpy.random.randn(min_len)
>>> b = scipy_fftpack.fft(a)

Zero-padding to the next fast length reduces computation time to
406 us, a speedup of ~5 times:

>>> next_fast_len(min_len)
10080
>>> b = scipy_fftpack.fft(a, 10080)

Rounding up to the next power of 2 is not optimal, taking 598 us to
compute, 1.5 times as long as the size selected by next_fast_len.

>>> b = fftpack.fft(a, 16384)

Similar speedups will occur for pre-planned FFTs as generated via
pyfftw.builders.

	
pyfftw.interfaces.scipy_fft.rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 1D real FFT.

The first six arguments are as per scipy.fft.rfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.rfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D real FFT.

The first six arguments are as per scipy.fft.rfft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2];
the rest of the arguments are documented
in the additional argument docs.

	
pyfftw.interfaces.scipy_fft.rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, planner_effort=None, auto_align_input=True, auto_contiguous=True)

	Perform an n-D real FFT.

The first six arguments are as per scipy.fft.rfftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn];
the rest of the arguments are documented
in the additional argument docs.

scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] interface

This module implements those functions that replace aspects of the
scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] module. This module provides the entire documented
namespace of scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack], but those functions that are not included
here are imported directly from scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack].

The exceptions raised by each of these functions are mostly as per their
equivalents in scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack], though there are some corner cases in
which this may not be true.

Some corner (mis)usages of scipy.fftpack [https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] may not transfer neatly.
For example, using scipy.fftpack.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2] with a non 1D array and
a 2D shape argument will return without exception whereas
pyfftw.interfaces.scipy_fftpack.fft2() will raise a ValueError.

	
pyfftw.interfaces.scipy_fftpack.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D discrete cosine transform.

The first three arguments are as per scipy.fftpack.dct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html#scipy.fftpack.dct];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD discrete cosine transform.

The first six arguments are as per scipy.fftpack.dctn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html#scipy.fftpack.dctn];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D discrete sine transform.

The first three arguments are as per scipy.fftpack.dst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD discrete sine transform.

The first six arguments are as per scipy.fftpack.dstn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dstn.html#scipy.fftpack.dstn];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.fft(x, n=None, axis=-1, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D FFT.

The first three arguments are as per scipy.fftpack.fft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D FFT.

The first three arguments are as per scipy.fftpack.fft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.fftn(x, shape=None, axes=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD FFT.

The first three arguments are as per scipy.fftpack.fftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D inverse discrete cosine transform.

The first three arguments are as per scipy.fftpack.idct() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idct.html#scipy.fftpack.idct];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD inverse discrete cosine transform.

The first six arguments are as per scipy.fftpack.idctn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idctn.html#scipy.fftpack.idctn];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D inverse discrete sine transform.

The first three arguments are as per scipy.fftpack.idst() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idst.html#scipy.fftpack.idst];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD inverse discrete sine transform.

The first six arguments are as per scipy.fftpack.idstn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idstn.html#scipy.fftpack.idstn];
the rest of the arguments are documented in the
additional arguments docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.ifft(x, n=None, axis=-1, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D inverse FFT.

The first three arguments are as per scipy.fftpack.ifft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform a 2D inverse FFT.

The first three arguments are as per scipy.fftpack.ifft2() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an nD inverse FFT.

The first three arguments are as per scipy.fftpack.ifftn() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.irfft(x, n=None, axis=-1, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D inverse real FFT.

The first three arguments are as per scipy.fftpack.irfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

	
pyfftw.interfaces.scipy_fftpack.next_fast_len(target)

	Find the next fast transform length for FFTW.

FFTW has efficient functions for transforms of length
2**a * 3**b * 5**c * 7**d * 11**e * 13**f, where e + f is either 0 or 1.

	Parameters

	target (int [https://docs.python.org/3/library/functions.html#int]) – Length to start searching from. Must be a positive integer.

	Returns

	out – The first fast length greater than or equal to target.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

On a particular machine, an FFT of prime length takes 2.1 ms:

>>> from pyfftw.interfaces import scipy_fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = numpy.random.randn(min_len)
>>> b = scipy_fftpack.fft(a)

Zero-padding to the next fast length reduces computation time to
406 us, a speedup of ~5 times:

>>> next_fast_len(min_len)
10080
>>> b = scipy_fftpack.fft(a, 10080)

Rounding up to the next power of 2 is not optimal, taking 598 us to
compute, 1.5 times as long as the size selected by next_fast_len.

>>> b = fftpack.fft(a, 16384)

Similar speedups will occur for pre-planned FFTs as generated via
pyfftw.builders.

	
pyfftw.interfaces.scipy_fftpack.rfft(x, n=None, axis=-1, overwrite_x=False, planner_effort=None, threads=None, auto_align_input=True, auto_contiguous=True)

	Perform an 1D real FFT.

The first three arguments are as per scipy.fftpack.rfft() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft];
the rest of the arguments are documented in the
additional argument docs.

Warning: scipy.fftpack is considered legacy, new code should
use scipy.fft instead.

dask.fft interface

This module implements those functions that replace aspects of the
dask.fft module. This module provides the entire documented
namespace of dask.fft, but those functions that are not included
here are imported directly from dask.fft.

It is notable that unlike numpy.fftpack, which dask.fft
wraps, these functions will generally return an output array with the
same precision as the input array, and the transform that is chosen is
chosen based on the precision of the input array. That is, if the input
array is 32-bit floating point, then the transform will be 32-bit floating
point and so will the returned array. Half precision input will be
converted to single precision. Otherwise, if any type conversion is
required, the default will be double precision.

The exceptions raised by each of these functions are mostly as per their
equivalents in dask.fft, though there are some corner cases in
which this may not be true.

	
pyfftw.interfaces.dask_fft.fft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.fft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.fft docstring follows below:

Perform a 1D FFT.

The first four arguments are as per numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.fft2(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.fft2

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.fft2 docstring follows below:

Perform a 2D FFT.

The first four arguments are as per numpy.fft.fft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.fftn(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.fftn

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.fftn docstring follows below:

Perform an n-D FFT.

The first four arguments are as per numpy.fft.fftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.hfft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.hfft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.hfft docstring follows below:

Perform a 1D FFT of a signal with hermitian symmetry.
This yields a real output spectrum. See numpy.fft.hfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft]
for more information.

The first four arguments are as per numpy.fft.hfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.ifft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.ifft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ifft docstring follows below:

Perform a 1D inverse FFT.

The first four arguments are as per numpy.fft.ifft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.ifft2(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.ifft2

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ifft2 docstring follows below:

Perform a 2D inverse FFT.

The first four arguments are as per numpy.fft.ifft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.ifftn(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.ifftn

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ifftn docstring follows below:

Perform an n-D inverse FFT.

The first four arguments are as per numpy.fft.ifftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.ihfft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.ihfft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.ihfft docstring follows below:

Perform a 1D inverse FFT of a real-spectrum, yielding
a signal with hermitian symmetry. See numpy.fft.ihfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft]
for more information.

The first four arguments are as per numpy.fft.ihfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.irfft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.irfft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.irfft docstring follows below:

Perform a 1D real inverse FFT.

The first four arguments are as per numpy.fft.irfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.irfft2(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.irfft2

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.irfft2 docstring follows below:

Perform a 2D real inverse FFT.

The first four arguments are as per numpy.fft.irfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.irfftn(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.irfftn

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.irfftn docstring follows below:

Perform an n-D real inverse FFT.

The first four arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.rfft(a, n=None, axis=None)

	Wrapping of pyfftw.interfaces.numpy_fft.rfft

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.rfft docstring follows below:

Perform a 1D real FFT.

The first four arguments are as per numpy.fft.rfft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.rfft2(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.rfft2

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.rfft2 docstring follows below:

Perform a 2D real FFT.

The first four arguments are as per numpy.fft.rfft2() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2];
the rest of the arguments are documented
in the additional arguments docs.

	
pyfftw.interfaces.dask_fft.rfftn(a, s=None, axes=None)

	Wrapping of pyfftw.interfaces.numpy_fft.rfftn

The axis along which the FFT is applied must have only one chunk. To change
the array’s chunking use dask.Array.rechunk.

The pyfftw.interfaces.numpy_fft.rfftn docstring follows below:

Perform an n-D real FFT.

The first four arguments are as per numpy.fft.rfftn() [https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn];
the rest of the arguments are documented
in the additional arguments docs.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyfftw	

 	
 	
 pyfftw.builders	

 	
 	
 pyfftw.builders._utils	

 	
 	
 pyfftw.interfaces	

 	
 	
 pyfftw.interfaces.cache	

 	
 	
 pyfftw.interfaces.dask_fft	

 	
 	
 pyfftw.interfaces.numpy_fft	

 	
 	
 pyfftw.interfaces.scipy_fft	

 	
 	
 pyfftw.interfaces.scipy_fftpack	

Index

 _
 | A
 | B
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | Z

_

 	
 	__call__() (pyfftw.builders._utils._FFTWWrapper method)

 	(pyfftw.FFTW method)

 	_compute_array_shapes() (in module pyfftw.builders._utils)

 	_cook_nd_args() (in module pyfftw.builders._utils)

 	
 	_FFTWWrapper (class in pyfftw.builders._utils)

 	_precook_1d_args() (in module pyfftw.builders._utils)

 	_setup_input_slicers() (in module pyfftw.builders._utils)

 	_Xfftn() (in module pyfftw.builders._utils)

A

 	
 	axes (pyfftw.FFTW attribute)

B

 	
 	byte_align() (in module pyfftw)

D

 	
 	dct() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	dctn() (in module pyfftw.interfaces.scipy_fftpack)

 	direction (pyfftw.FFTW attribute)

 	
 	disable() (in module pyfftw.interfaces.cache)

 	dst() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	dstn() (in module pyfftw.interfaces.scipy_fftpack)

E

 	
 	empty_aligned() (in module pyfftw)

 	enable() (in module pyfftw.interfaces.cache)

 	
 	execute() (pyfftw.FFTW method)

 	export_wisdom() (in module pyfftw)

F

 	
 	fft() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	fft2() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	
 	fftn() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	FFTW (class in pyfftw)

 	flags (pyfftw.FFTW attribute)

 	forget_wisdom() (in module pyfftw)

G

 	
 	get_input_array() (pyfftw.FFTW method)

 	
 	get_output_array() (pyfftw.FFTW method)

H

 	
 	hfft() (in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

I

 	
 	idct() (in module pyfftw.interfaces.scipy_fftpack)

 	idctn() (in module pyfftw.interfaces.scipy_fftpack)

 	idst() (in module pyfftw.interfaces.scipy_fftpack)

 	idstn() (in module pyfftw.interfaces.scipy_fftpack)

 	ifft() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	ifft2() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	ifftn() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	ihfft() (in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	
 	import_wisdom() (in module pyfftw)

 	input_alignment (pyfftw.FFTW attribute)

 	input_array (pyfftw.FFTW attribute)

 	input_dtype (pyfftw.FFTW attribute)

 	input_shape (pyfftw.FFTW attribute)

 	input_strides (pyfftw.FFTW attribute)

 	irfft() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	irfft2() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	irfftn() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	is_byte_aligned() (in module pyfftw)

 	is_n_byte_aligned() (in module pyfftw)

M

 	
 	
 module

 	pyfftw

 	pyfftw.builders

 	pyfftw.builders._utils

 	pyfftw.interfaces

 	pyfftw.interfaces.cache

 	pyfftw.interfaces.dask_fft

 	pyfftw.interfaces.numpy_fft

 	pyfftw.interfaces.scipy_fft

 	pyfftw.interfaces.scipy_fftpack

N

 	
 	N (pyfftw.FFTW attribute)

 	n_byte_align() (in module pyfftw)

 	n_byte_align_empty() (in module pyfftw)

 	
 	next_fast_len() (in module pyfftw)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	normalise_idft (pyfftw.FFTW attribute)

O

 	
 	ones_aligned() (in module pyfftw)

 	ortho (pyfftw.FFTW attribute)

 	output_alignment (pyfftw.FFTW attribute)

 	
 	output_array (pyfftw.FFTW attribute)

 	output_dtype (pyfftw.FFTW attribute)

 	output_shape (pyfftw.FFTW attribute)

 	output_strides (pyfftw.FFTW attribute)

P

 	
 	
 pyfftw

 	module

 	
 pyfftw.builders

 	module

 	
 pyfftw.builders._utils

 	module

 	pyfftw.config.NUM_THREADS (in module pyfftw)

 	pyfftw.config.PLANNER_EFFORT (in module pyfftw)

 	
 pyfftw.interfaces

 	module

 	
 	
 pyfftw.interfaces.cache

 	module

 	
 pyfftw.interfaces.dask_fft

 	module

 	
 pyfftw.interfaces.numpy_fft

 	module

 	
 pyfftw.interfaces.scipy_fft

 	module

 	
 pyfftw.interfaces.scipy_fftpack

 	module

 	pyfftw.simd_alignment (in module pyfftw)

R

 	
 	rfft() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	(in module pyfftw.interfaces.scipy_fftpack)

 	rfft2() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

 	
 	rfftn() (in module pyfftw.builders)

 	(in module pyfftw.interfaces.dask_fft)

 	(in module pyfftw.interfaces.numpy_fft)

 	(in module pyfftw.interfaces.scipy_fft)

S

 	
 	set_keepalive_time() (in module pyfftw.interfaces.cache)

 	
 	simd_aligned (pyfftw.FFTW attribute)

U

 	
 	update_arrays() (pyfftw.FFTW method)

Z

 	
 	zeros_aligned() (in module pyfftw)

pyFFTW v0.11.0 Release Notes

We are happy to announce the release of pyFFTW v0.11.0. This release is the
result of more than two years of work by 9 contributors.

pyFFTW is a pythonic wrapper around FFTW 3, the speedy FFT library. The
ultimate aim is to present a unified interface for all the possible transforms
that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary
axes of arbitrary shaped and strided arrays. Operating FFTW in multithreaded
mode is supported.

pyFFTW implements the numpy and scipy fft interfaces in order for users to take
advantage of the speed of FFTW with minimal code modifications. A dask fft
interface is provided as a drop-in replacement for the equivalent module in
dask.

New features

Dask interface

A complete drop-in replacement of Dask Array’s FFT module is provided.
It includes all numpy-like FFT functions, which use FFTW under the hood.
Other functions from Dask Array’s FFT module are imported as a convenience.

Fast transform planning utility

A routine next_fast_len has been added to allow the user to easily
determine sizes for which the FFT computation is computationally efficient.

Expanded support for norm keyword argument in the numpy interfaces

Support for the norm keyword argument has been expanded to all numpy
FFT interfaces. It was previously present only for the complex-valued routines.

Support for norm keyword argument in FFTW builders

A norm keyword argument has been added to the FFTW builders allowing the
normalization of pre-planned FFTs to be chosen in the same manner as for the
numpy interfaces.

Dynamic library detection at build and run time

setup.py has been overhauled to dynamically detect the variants of FFTW that
are present. Previously single, double and long double libraries were
all required at build time. Now, compilation will attempt to detect which
variants are present and compile based on that.

It also now possible to specify an additional search path for the fftw
libraries by setting the environment variable PYFFTW_LIB_DIR.

One caveat is that dynamic library detection is not used by default on the
Windows platform, as the default assumption is that on Windows, a full set of
precompiled libraries have been downloaded from fftw.org. Alternatively, if the
environment variable PYFFTW_WIN_CONDAFORGE is defined, dynamic detection of
libraries named fftw3.dll, fftw3f.dll and fftw3l.dll is attempted. This is for
compatibility with the CMake-based FFTW build used by conda-forge.

The builders and interfaces all detect at runtime which variants are available
and select the most suitable precision for the input’s dtype. For example, if
single-precsion FFTW libraries are not available, double-precision FFTs will be
used to transform single-precision inputs. The PyFFTW test suite also detects
at runtime which variants have been compiled and only runs tests against the
available precisions.

OpenMP threading support

Building with OpenMP-based threading is also now supported. If both OpenMP
and posix threaded libraries are found, the OpenMP variant will be preferred.
If the user desires to instead link to posix threads by default, the
environment variable PYFFTW_USE_PTHREADS should be defined.

Custom Configuration of Planners and Interfaces

The new module pyfftw.config can be used to assign values for the default
number of threads (via pyfftw.config.NUM_THREADS) and default FFTW planner
effort (via pyfftw.config.PLANNER_EFFORT). It is also now possible to
define the environment variables PYFFTW_NUM_THREADS and
PYFFTW_PLANNER_EFFORT to determine the default values at import time.

Bugs Fixed

A platform-dependent bug that results in potentially overwriting a previously
computed output upon repeated calls to the numpy interfaces was fixed (#199).

Fix to potential platform-dependent integer overflow in empty_aligned (#192).

rfftfreq is now present in the numpy fft interfaces for numpy >= 1.8 (#207)

Other changes

float16 inputs are now transformed using single rather than double precision.

The default planning for the numpy and scipy interfaces has changed from
FFTW_MEASURE to FFTW_ESTIMATE. This results in faster planning. In cases
where the same transform is to be repeated many times, it is likely
advantageous to manually specify FFTW_MEASURE instead (or use the FFTW builders
to pre-plan the FFT).

FutureWarnings related to NumPy multiindexing in NumPy 1.15 are avoided by
using more modern indexing conventions.

version number handling is now automatically handled by versioneer

All documentation is now built and hosted at Read the Docs (
http://pyfftw.readthedocs.io).

Authors

	Frederik Beaujean +

	Dennis Brakhane +

	Henry Gomersall

	John Kirkham +

	Antony Lee +

	Gregory R. Lee

	Iblis Lin +

	Matthew D. Scholefield +

	Hsiou-Yuan (Herbert) Liu +

A total of 9 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v0.11

	#27 [https://github.com/pyFFTW/pyFFTW/issues/27]: missing float and long-double libraries

	#32 [https://github.com/pyFFTW/pyFFTW/issues/32]: Provide the sources of the documentation in the source distribution instead of a build

	#64 [https://github.com/pyFFTW/pyFFTW/issues/64]: Clean install from requirements.txt file - ImportError: No module named ‘numpy’

	#70 [https://github.com/pyFFTW/pyFFTW/issues/70]: Support not having all varieties of FFTW installed

	#86 [https://github.com/pyFFTW/pyFFTW/issues/86]: Add the source of the documentation to the release tarball

	#87 [https://github.com/pyFFTW/pyFFTW/issues/87]: Avoid overwriting the version file distributed in the source release

	#125 [https://github.com/pyFFTW/pyFFTW/issues/125]: pip install pyfftw fails on travis-ci

	#132 [https://github.com/pyFFTW/pyFFTW/issues/132]: Citation preferences?

	#134 [https://github.com/pyFFTW/pyFFTW/issues/134]: link on github broken

	#146 [https://github.com/pyFFTW/pyFFTW/issues/146]: README on pypi still points to github.com/hgomersall/pyfftw

	#151 [https://github.com/pyFFTW/pyFFTW/issues/151]: Dask wrappers/interface for pyFFTW

	#152 [https://github.com/pyFFTW/pyFFTW/issues/152]: Missing norm argument in several numpy interface fft methods

	#174 [https://github.com/pyFFTW/pyFFTW/issues/174]: Using OpenMP threads instead of POSIX threads #174

	#175 [https://github.com/pyFFTW/pyFFTW/issues/175]: Dask 2-D/N-D wrappers for pyFFTW

	#196 [https://github.com/pyFFTW/pyFFTW/issues/196]: Change URL in github description

	#197 [https://github.com/pyFFTW/pyFFTW/issues/197]: Numpy interface corrupts array argument

	#206 [https://github.com/pyFFTW/pyFFTW/issues/206]: numpy_fft should re-export rfftfreq

	#215 [https://github.com/pyFFTW/pyFFTW/issues/215]: AppVeyor status in PRs

Pull requests for v0.11

	#140 [https://github.com/pyFFTW/pyFFTW/pull/140]: ENH: process float16 inputs in single precision

	#148 [https://github.com/pyFFTW/pyFFTW/pull/148]: np/sp interfaces default to FFTW_ESTIMATE

	#149 [https://github.com/pyFFTW/pyFFTW/pull/149]: Add freebsd build support

	#153 [https://github.com/pyFFTW/pyFFTW/pull/153]: Document the NumPy interface’s hfft and ihfft

	#154 [https://github.com/pyFFTW/pyFFTW/pull/154]: Provide a Dask interface to pyFFTW’s 1-D FFTs

	#155 [https://github.com/pyFFTW/pyFFTW/pull/155]: Handle install requirements separately

	#156 [https://github.com/pyFFTW/pyFFTW/pull/156]: Use org URLs

	#157 [https://github.com/pyFFTW/pyFFTW/pull/157]: Rename Cache interface tests

	#158 [https://github.com/pyFFTW/pyFFTW/pull/158]: DOC: add next_fast_len to the interfaces docs too

	#159 [https://github.com/pyFFTW/pyFFTW/pull/159]: add next_fast_len as introduced in scipy 0.18

	#160 [https://github.com/pyFFTW/pyFFTW/pull/160]: ENH: add norm keyword argument to the rfft*, hfft* numpy interfaces

	#161 [https://github.com/pyFFTW/pyFFTW/pull/161]: Configure RTD

	#162 [https://github.com/pyFFTW/pyFFTW/pull/162]: Check system prefix for headers and libraries

	#163 [https://github.com/pyFFTW/pyFFTW/pull/163]: Move docs out of the source code

	#164 [https://github.com/pyFFTW/pyFFTW/pull/164]: Fix sphinx configuration

	#165 [https://github.com/pyFFTW/pyFFTW/pull/165]: Import functions directly from the NumPy FFT interface

	#166 [https://github.com/pyFFTW/pyFFTW/pull/166]: Make sure to reference Dask interface

	#167 [https://github.com/pyFFTW/pyFFTW/pull/167]: extend the norm argument as implemented in the numpy interface to the builders

	#169 [https://github.com/pyFFTW/pyFFTW/pull/169]: Documentation is on Read the Docs

	#170 [https://github.com/pyFFTW/pyFFTW/pull/170]: Redirect to Read the Docs

	#171 [https://github.com/pyFFTW/pyFFTW/pull/171]: DOC: add next_fast_len to the interfaces docs too

	#172 [https://github.com/pyFFTW/pyFFTW/pull/172]: Attempted fix to the problem of the FFTW libs not being downloaded on appveyor

	#173 [https://github.com/pyFFTW/pyFFTW/pull/173]: BLD: no conda package for numpy1.9 on Python3.6 so bump to 1.10.4

	#176 [https://github.com/pyFFTW/pyFFTW/pull/176]: Automate version number handling via versioneer

	#177 [https://github.com/pyFFTW/pyFFTW/pull/177]: [setup] Detect available FFTW libs

	#178 [https://github.com/pyFFTW/pyFFTW/pull/178]: Disable norm as a keyword argument in Dask test

	#182 [https://github.com/pyFFTW/pyFFTW/pull/182]: include documentation in the source distribution

	#185 [https://github.com/pyFFTW/pyFFTW/pull/185]: fix build-time fftw library detection for compatibility with conda-forge

	#186 [https://github.com/pyFFTW/pyFFTW/pull/186]: update interfaces.scipy_fftpack namespace

	#189 [https://github.com/pyFFTW/pyFFTW/pull/189]: [setup, pyx] Build only the parts for which FFTW libraries were found

	#190 [https://github.com/pyFFTW/pyFFTW/pull/190]: WIP: support building from conda-forge FFTW packages on Windows

	#192 [https://github.com/pyFFTW/pyFFTW/pull/192]: simple fix to overflow in empty_aligned() (on Windows machine)

	#198 [https://github.com/pyFFTW/pyFFTW/pull/198]: Fix broken build with OpenMP

	#199 [https://github.com/pyFFTW/pyFFTW/pull/199]: Fix to #197 in which misaligned arrays in the cache caused overwrites…

	#200 [https://github.com/pyFFTW/pyFFTW/pull/200]: update version import syntax in doc/conf.py for compatibility with versioneer

	#207 [https://github.com/pyFFTW/pyFFTW/pull/207]: add rfftfreq to the numpy interfaces

	#209 [https://github.com/pyFFTW/pyFFTW/pull/209]: Fix dtype bug on systems where longdouble is equivalent to double

	#210 [https://github.com/pyFFTW/pyFFTW/pull/210]: setup.py: make sure install_requires contains numpy

	#211 [https://github.com/pyFFTW/pyFFTW/pull/211]: Fix Dask test interface

	#212 [https://github.com/pyFFTW/pyFFTW/pull/212]: Include Dask 2-D/N-D wrappers for pyFFTW

	#213 [https://github.com/pyFFTW/pyFFTW/pull/213]: Dask Interface Extras

	#216 [https://github.com/pyFFTW/pyFFTW/pull/216]: Tweaked the appeveyor bintray build stuff to properly look up the ver…

	#218 [https://github.com/pyFFTW/pyFFTW/pull/218]: Explicitly add Dask Array as an extra requirement

	#219 [https://github.com/pyFFTW/pyFFTW/pull/219]: Add optional SciPy requirement

	#221 [https://github.com/pyFFTW/pyFFTW/pull/221]: Optionally use Dask if Numpy is 1.10

	#230 [https://github.com/pyFFTW/pyFFTW/pull/230]: Add clarification to license and add license to docs.

	#233 [https://github.com/pyFFTW/pyFFTW/pull/233]: Fix using non-tuple multidimensional indices

	#240 [https://github.com/pyFFTW/pyFFTW/pull/240]: avoid multi-indexing warnings with numpy >= 1.15

	#241 [https://github.com/pyFFTW/pyFFTW/pull/241]: Allow run-time choice of the default number of threads and planning effort

	#242 [https://github.com/pyFFTW/pyFFTW/pull/242]: update test suite avoid mkl_fft when it is present

pyFFTW v0.12.0 Release Notes

We are happy to announce the release of pyFFTW v0.12.0.

The highlight of this release is the addition of interfaces for the
scipy.fft module that was introduced with SciPy 1.4. This release is now
compatibile with SciPy 1.4. This release supports Python 2.7 and
3.5-3.8.

pyFFTW is a pythonic wrapper around FFTW 3, the speedy FFT library. The
ultimate aim is to present a unified interface for all the possible transforms
that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary
axes of arbitrary shaped and strided arrays. Operating FFTW in multithreaded
mode is supported.

pyFFTW implements the numpy and scipy fft interfaces in order for users to take
advantage of the speed of FFTW with minimal code modifications. A dask fft
interface is provided as a drop-in replacement for the equivalent module in
dask.

New features

scipy.fft interface

This interface operates like the existing scipy.fftpack interface, but
matches the API of the newer scipy.fft module introduced in SciPy 1.4.

Bugs Fixed

The test suite was updated to be compatible with more recent dask (#278).

The Cython variable _N was renamed to avoid a name conflict with a preprocessor
token on some platforms (#259).

Other changes

Python 3.4 support has been dropped. pyFFTW now supports Python 2.7 and 3.5-3.8.

The Cython code has been updated to explicitly use language_level=3str for compatibility with a future Cython 3.0 release.

Authors

	Peter Bell +

	Gregory R. Lee

	Stefan Peterson +

	DWesl +

A total of 4 people contributed PRs to this release.
People with a “+” by their names contributed a patch for the first time.

John Kirkham and Henry Gomersall also contributed by helping review PRs.

Issues closed for v0.12

	#268 [https://github.com/pyFFTW/pyFFTW/issues/268]: Add a scipy.fft interface

	#276 [https://github.com/pyFFTW/pyFFTW/issues/276]: futurewarnings in dask 2.8 break test suite

Pull requests for v0.12

	#257 [https://github.com/pyFFTW/pyFFTW/issues/257]: Update install instructions in README

	#259 [https://github.com/pyFFTW/pyFFTW/issues/259]: Avoid using “_N”.

	#262 [https://github.com/pyFFTW/pyFFTW/issues/262]: Add reference to third-party planfftw package

	#265 [https://github.com/pyFFTW/pyFFTW/issues/265]: remove import of non-public _fftpack within the scipy interfaces

	#267 [https://github.com/pyFFTW/pyFFTW/issues/267]: DOC: scipy_fftpack does not treat dtypes differently from scipy.fftpack

	#269 [https://github.com/pyFFTW/pyFFTW/issues/269]: scipy.fft interface

	#271 [https://github.com/pyFFTW/pyFFTW/issues/271]: bump conda package versions on Appveyor

	#273 [https://github.com/pyFFTW/pyFFTW/issues/273]: Fix shape argument in scipy_fft interface

	#274 [https://github.com/pyFFTW/pyFFTW/issues/274]: Update scipy.fft interface to fix shape handling and add workers argument

	#278 [https://github.com/pyFFTW/pyFFTW/issues/278]: Update Dask tests for compatibility with recent Dask

	#283 [https://github.com/pyFFTW/pyFFTW/issues/283]: explicitly set the Cython language level

pyFFTW v0.13.0 release notes

We’re happy to announce the release of pyFFTW v0.13.0!

pyFFTW is a pythonic wrapper around FFTW 3, the speedy FFT library. The
ultimate aim is to present a unified interface for all the possible transforms
that FFTW can perform.

pyFFTW implements the NumPy and SciPy FFT interfaces in order for users to take
advantage of the speed of FFTW with minimal code modifications. A Dask FFT
interface is provided as a drop-in replacement for the equivalent module in
dask. For more information, examples, and documentation, please see
the documentation [https://pyfftw.readthedocs.io/en/latest/].

A highlight of this release is the addition of real-to-real transforms,
specifically the type I-IV discrete sine and cosine transforms. These
transforms are also available from the pyfftw.interfaces.numpy_fft and
pyfftw.interfaces.scipy_fft interfaces as well as the legacy
pyfftw.interfaces.scipy_fftpack interface.

The NumPy interfaces have also now been updated to support new normalization
options added in NumPy 1.20. The new ‘backward’ and ‘forward’ options are
described in the NumPy docs [https://numpy.org/doc/1.20/reference/routines.fft.html#normalization].

This release supports Python 3.7-3.10 on Windows, MacOS and Linux. For more
details on the architectures providing binary wheels on PyPI, see the
full table of prebuilt wheels [https://github.com/pyFFTW/pyFFTW#wheels].
Binary packages for new Apple M1 processors will be made available via
conda-forge [https://conda-forge.org/].

Pull requests for v0.13.0

	add pyproject.toml (#226)

	Real-to-real transforms (#256)

	Drop testing on Python 2.7 and 3.5 (#285)

	Minor doc changes to README (#305)

	Document PYFFTW_INCLUDE and PYFFTW_LIB_DIR (#311)

	Build wheels on GitHub Actions via cibuildwheel (#318)

	Fixed setup.py and working CI builds (#323)

	Update NumPy and SciPy interfaces with new norm options (take 2) (#330)

	CI: Added the correct gh actions badge and tweaked the name of the workflow (#331)

	CI: Improved badge to link to the actual workflow (#332)

	remove use of distutils (#333)

	Increase time allowed for cache clearance in test (#334)

	Increase timing in cache tests (#336)

	Fix miscellaneous typos (#337)

8 authors added to this release [alphabetical by first name or login]

	Chris Val

	David Wells

	Gregory Lee

	Henry Gomersall

	Jeppe Klitgaard

	Jonathan Essen

	Pierre Augier

	Tim Gates

3 reviewers added to this release [alphabetical by first name or login]

	Gregory Lee

	Henry Gomersall

	Jeppe Klitgaard

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyFFTW’s documentation!

 		
 Overview and A Short Tutorial

 		
 Quick and easy: the pyfftw.interfaces module

 		
 Integration with 3rd party libraries

 		
 The workhorse pyfftw.FFTW class

 		
 One-Dimensional Transforms

 		
 Multi-Dimensional Transforms

 		
 Wisdom

 		
 The pyfftw.builders functions

 		
 Configuring FFTW planning effort and number of threads

 		
 License

 		
 API Reference

 		
 pyfftw - The core

 		
 FFTW Class

 		
 Wisdom Functions

 		
 Utility Functions

 		
 FFTW Configuration

 		
 pyfftw.builders - Get FFTW objects using a numpy.fft like interface

 		
 Overview

 		
 Supported Functions and Caveats

 		
 Additional Arguments

 		
 The Functions

 		
 pyfftw.builders._utils - Helper functions for pyfftw.builders

 		
 _FFTWWrapper

 		
 _Xfftn()

 		
 _compute_array_shapes()

 		
 _cook_nd_args()

 		
 _precook_1d_args()

 		
 _setup_input_slicers()

 		
 pyfftw.interfaces - Drop in replacements for other FFT implementations

 		
 Implemented Functions

 		
 Additional Arguments

 		
 Caching

